
Alhambra: A System for Creating, Enforcing, and Testing
Browser Security Policies

Shuo Tang
University of Illinois,

Urbana-Champaign, IL

stang6@illinois.edu

Chris Grier
University of California,

Berkeley, CA

grier@cs.berkeley.edu

Onur Aciicmez
Samsung Advanced Institute
of Technology, San Jose, CA

o.aciicmez@samsung.com

Samuel T. King
University of Illinois,

Urbana-Champaign, IL

kingst@illinois.edu

ABSTRACT

Alhambra is a browser-based system designed to enforce and test

web browser security policies. At the core of Alhambra is a policy-

enhanced browser supporting fine-grain security policies that re-

strict web page contents and execution. Alhambra requires no

server-side modifications or additions to the web application. Poli-

cies can restrict the construction of the document as well as the ex-

ecution of JavaScript using access control rules and a taint-tracking

engine. Using the Alhambra browser, we present two security poli-

cies that we have built using our architecture, both designed to pre-

vent cross-site scripting. The first policy uses a taint-tracking en-

gine to prevent cross-site scripting attacks that exploit bugs in the

client-side of the web applications. The second one uses browsing

history to create policies that restrict the contents of documents and

prevent the inclusion of malicious content.

Using Alhambra we analyze the impact of policies on the com-

patibility of web pages. To test compatibility, Alhambra supports

revisiting user-generated browsing sessions and comparing multi-

ple security policies in parallel to quickly and automatically eval-

uate security policies. To compare security policies for identical

pages we have also developed useful comparison metrics that quan-

tify differences between identical pages executed with different se-

curity policies. Not only do we show that our policies are effective

with minimal compatibility cost, we also demonstrate that Alham-

bra can enforce strong security policies and provide quantitative

evaluation of the differences introduced by security policies.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information Systems]:

Security and Protection

General Terms

Security, Design

Keywords

Web browser, web security, cross-site scripting

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

1. INTRODUCTION
Today’s web epitomizes the culmination of distributed systems

theory and practice, enabling millions of users to access billions

of services, scattered around the world, seamlessly and efficiently.

Using only a web browser running on a single client machine,

users can search the billions of documents on the Web in under

two seconds, and modern web browsers can render the slew of

buggy HTML documents found on today’s Web effectively. Unfor-

tunately, this triumph of performance and compatibility has come

at the cost of security. For example, the browser’s ability to render

incorrect HTML has effectively introduced browser-specific am-

biguities into the HTML specification. These ambiguities make

it difficult for server-side code to reason about how the browser

will interpret data, and is one cause of the overwhelming number

of security vulnerabilities, such as cross-site scripting (XSS), in

web-based applications. In fact, XSS recently became the most

prevalent vulnerability on modern computer systems, accounting

for more vulnerabilities than all others combined [22].

Researchers have proposed many techniques for detecting, pre-

venting and containing attacks in web applications. Mitigation

techniques can involve the server, the server and the client, or just

the client to provide protection to users.

The first, and often most accepted, solution to web application

vulnerabilities is simple: fix the bug. Unfortunately, web develop-

ers have historically been slow to patch bugs [22], despite the ef-

forts from the research community to make this process easier [3].

Furthermore, recent research has argued that purely server-side

techniques are flawed due to differences in browser implementa-

tions [16], ultimately limiting the effectiveness of server side tech-

niques.

Hybrid server-client solutions use browser modifications to al-

low web-application developers to express security constraints to

the browser directly. Some recent examples of this type of defen-

sive architecture include introducing new HTML tags for fine-grain

sandboxing of scripts [10, 25], HTTP headers to express precisely

the provenance of a request to servers [4], or a server-specified

whitelist of scripts [10]. Two downsides of hybrid solutions are

that servers and clients must both be modified, introducing a high

barrier to adoption, and hybrid solutions provide little support for

legacy systems.

Client techniques filter attacks and attempt to make pages safe

by changing the behavior of web pages [11, 18, 24, 13]. Client

side prevention is positioned so that clients can defend themselves

against servers even if the servers are malicious or unpatched. Fun-

damentally, scripts execute within browsers, making browsers a

natural location to detect and remove malicious scripts, but having

browsers change page behavior might affect how the page operates.

This potential compatibility issue drives the development of client

side mitigation techniques and has caused some designers to deploy

conservative designs to “avoid breaking the Web” [18].

To protect users against vulnerable sites we propose Alhambra1,

a browser-based system that can enforce fine-grain security policies

and automatically defeat a wide range of web attacks. Alhambra

requires no modifications to the server or web application; instead

we use a browser to enforce client-side policies that prevent attacks

that exploit bugs in web applications, such as XSS. Our approach

is to provide a system that reduces attack surface while retaining

compatibility. Alhambra has built-in support for monitoring the

execution of a web application in the browser and provides sup-

port for policies that restrict client-side web application execution.

Based on our architecture we have developed two novel policies

that aim to defeat XSS attacks.

Alhambra includes a browser-based testing system that enables

us to analyze the impact of security policies on the compatibility

of web pages. Using browsing sessions generated by people us-

ing browsers and stored for analysis enables our system to revisit

each web page using different security settings quickly and auto-

matically. To provide comparison between policies for identical

pages we have also developed useful comparison metrics for quan-

tifying differences between identical pages executed with different

security policies. Our metrics operate at the visible level as well

as examining execution and parsing information generated by our

browser.

We have developed two policies that use the Alhambra archi-

tecture for enforcement and testing. Our first policy is designed

to prevent DOM-based XSS attacks or detect potential vulnerabili-

ties, where client-side code is unsafely using untrusted input. This

policie leverages an object-level taint tracking engine that we build

into the browser to identify insecure use of untrusted content. Thus,

Alhambra can either prevent those content from being executed as

JavaScript code or report a potential DOM-based XSS bug in the

web application.

The second one uses information generated by visiting and ana-

lyzing web applications to automatically generate policies. Auto-

matically generated policies are based on page structure, and are

designed to prevent content injection attacks, such as XSS attacks.

During a brief training phase, we learn the structure of a page, and

then during subsequent visits to this page we enforce this structure,

eliminating content injection attacks that perturb the structure of a

page.

We show that Alhambra is able to prevent real attacks and eval-

uate degrees of compatibility for sophisticated web applications.

Using browsing sessions provides the information required to test

policies automatically and we show that our policies have small or

no impact on web browsing. For the policies we present in this

paper, we see negligible impact on the parsing, rendering, or exe-

cution of complex web applications.

To the best of our knowledge the contributions of this paper are

as follows:

• We present a novel browser architecture with built-in mech-

anisms for enforcing browser security policies.

• We present a browser-based testing system that uses user-

generated browsing sessions to enable policy testing.

1Mosaics pervade Islamic art, but many of the great mosaics have
been destroyed. One of the best preserved collections of mosaics
has been protected at the Alhambra fortress in Cordoba, Spain.

• We show that using object-level taint tracking in the browser

can prevent DOM-based XSS vulnerabilities.

• We show how by using only information available at the

client we can enforce policies that can prevent a wide range

of content injection attacks (i.e. XSS attacks), without

changing the user-visible operation of the site.

2. ALHAMBRA ARCHITECTURE
This paper describes Alhambra, a browser-based system for cre-

ating, enforcing and testing browser security policies. We have

three main goals that drive the creation of useful browser security

features. Our first goal in Alhambra is to develop techniques that al-

low browsers to automatically defend themselves from attack. Our

second goal is to avoid causing unreasonable incompatibility and

to permit as much of existing web application functionality as pos-

sible. Our third goal is to run policies client side without any help

from the server.

In this section we describe the design of the Alhambra browser.

We first discuss our overall architecture for preventing attacks (Sec-

tion 2.1). Then we describe how Alhambra enforces policies on the

structure and execution of web applications (Section 2.2).

2.1 Alhambra
Alhambra consists of two components: a policy enhanced

browser and a replay system for testing (Figure 1). At the heart

of Alhambra is a browser capable of enforcing fine-grain security

policies. The browser uses a policy layer to impose restrictions

on the execution of each page. Security policies are completely

client-side and require no server support in order to be enforced.

The browser has the unique responsibility of parsing and executing

scripts and is the final authority that can remove malicious scripts

before they are executed. By positioning security policy and en-

forcement mechanisms inside the browser we enable the browser

to prevent attacks.

An important and often overlooked aspect of attack prevention is

the compatibility cost of deploying security policies. Compatibil-

ity can be at odds with security and Alhambra must have minimal

impact on benign pages to be acceptable to user browsing the web.

To determine if our security decisions impact the functionality of

a web page we have constructed Alhambra to include testing func-

tionality and metrics for measuring compatibility. Figure 1 shows

how the browser and replay engine are used to test security poli-

cies. By testing each security policy we develop and combining

successful policies we can choose the right policy for a site. By

further testing each policy with our framework we are able to iden-

tify compatibility problems quickly and automatically.

2.2 Enforcing policies
In general, the Alhambra system is well-suited for a wide range

of client-side policies, so we chose policy enforcement properties

based on two key goals. First, we want to hone in on fundamental

properties to client-side security policy to provide strong protec-

tions. Second, we want to offer flexibility to implement a variety

of policies in order to test and evaluate the impact on compatibility

of each policy.

Alhambra enforces policies as the page is parsed and scripts are

executed. There are two primary locations where policy can be en-

forced: document structure and execution. Structural policies can

restrict the creation of elements or place limitations on the type of

content in a web page, policies of this type are enforced on inter-

actions with document tree. Policies can also restrict the execution

of scripts by disabling methods or restricting access to methods

Figure 1: The Alhambra system uses replay to enable policy testing of identical pages. Alhambra captures and records a browsing session

using the replay engine, and plays back to instances of the Alhambra browser with a policy and without a policy. Comparisons on the content

are then performed to evaluate compatibility.

based on runtime information. Both types of policies are enforced

throughout the lifetime of a page within the browser.

To enforce policy during execution, we have built an object-level

taint tracking engine into Alhambra, allowing policies to specify

execution constraints based on the flow of data within the client-

side portion of a web application. We have developed policies that

seek to prevent DOM-based XSS attacks and detect DOM-based

XSS vulnerabilities and present them in Section 4.2. In Alham-

bra taint-tracking is built into the JavaScript engine and HTML

engine and allows taint information to be propagated as data flows

through JavaScript runtime and DOM tree. Policies can use the

taint-tracking engine to control execution by specifying methods

that cannot be allowed to execute on tainted objects. This mecha-

nism is described in greater detail with the policy in Section 4.2.

In addition to page execution, we observe and enforce the doc-

ument structure of web pages. The concept of document structure

was introduced by Nadji et al. [16], and refers to the parsed tree

generated by the parsing of a web page. In the web browser the

HTML parser generates a document tree from the text contents of a

page. Every page contains an HTML document composed of differ-

ent types of HTML elements (, <p>, <script>, etc. . .).

The W3C Document Object Model (DOM) standards [1] provide a

public reference for browser interfaces to elements in a web page.

Our definition and use of document structure differs from the term

introduced by Nadji et al. since we combine both dynamic docu-

ment structure and static document structure.

In Section 4.3 we describe a document structure integrity (DSI)

policy that uses browsing history to create rules that limit the docu-

ment structure of a page. Generally, our policy engine allows rules

that prohibit elements within a particular document. For example,

a policy can prohibit any non-inline scripts and only allow scripts

from a set of whitelisted domains (similar to part of the Mozilla

Content Security Policy [15]).

3. TESTING POLICIES
Alhambra uses browser support for testing browser policies.

Since policies can modify the functionality of the page, our intent

when testing them is to determine if the look and functionality of

that page are impaired. To test policies, we develop a browser-level

system capable of revisiting user generated browser sessions, and

we propose three metrics of comparison to determine if our policies

make unwanted modifications.

Alhambra is the first system to include the ability to perform side

by side comparisons of browsers and isolate the effects of security

policy on compatibility. Testing the impact of security techniques

can be difficult and we provide a systematic method for testing the

compatibility of browser security techniques. A fundamental as-

pect of testing security policies is the ability to allow policies to

modify the execution and contents of the page while the system is

revisiting a browsing session.

This section describes the design and implementation of our

browser-level mechanisms for testing compatibility of our security

policies. First, we discuss a naive testing technique and why it is

insufficient for testing security policies (Section 3.1). Next, we de-

scribe our browser-level revisiting mechanisms and how they over-

come the shortcomings of the naive approach (Section 3.2). Finally,

we discuss our techniques and quantitative metrics for comparing

two pages rendered using different security policies (Section 3.3).

3.1 Naive policy testing
A naive approach to testing a policy consists of three simple

steps. First, the browser could navigate an unmodified browser

and a policy-enhanced browser to the page to be tested. Second,

the browser could replicate user actions such as typing, clicking

and other interactions in both browsers. Third, the browser could

compare the resulting pages in both browsers by inspecting the ren-

dering and functionality.

This naive approach is very easy to deploy and the only require-

ment is browser support for replicating user actions, which could

be implemented using a variety of techniques inside or outside

the browser. Though easy, different sources of non-determinism

through page execution make the naive testing system undesirable

as the main method of testing policies.

A single page viewed multiple times can differ due to server-side

and client-side non-determinism. Server-side non-determinism is

caused by the web server providing different content for identi-

cal requests. The content returned to the unmodified and policy-

enhanced browsers could change based on the time of day, client

or server state, or other dynamic decisions even if both browsers

request identical URLs. Moreover, even if the two browsers get

the same web pages, they could make different subsequent re-

quests because of client-side non-determinism. For example, a web

page could use a random number to choose which advertisement to

download.

Finally, re-issuing non-idempotent requests, such as HTTP

POST requests, may create unanticipated and undesirable side ef-

fects. For example, a user might buy a book at amazon.com. If

we wanted to test this action with ten different policies, the browser

might end up purchasing ten extra copies. Furthermore, making

HTTP GET requests idempotent is considered a good practice, but

unenforced in modern web systems, making it nearly impossible

for the browser to reason about which requests will induce undesir-

able side effects.

3.2 Testing policies in Alhambra
To overcome the shortcomings of the naive approach, we de-

veloped a browser-based testing system designed to recreate past

browsing sessions to test security policies. Using our system we

are able to test policies quickly and accurately to determine the

compatibility impact of our security decisions.

Logging and replay are widely used for replay of programs. Gen-

erally speaking, the characteristics of browsers and web applica-

tions determine the type of information that needs to be logged

for re-execution. We built Alhambra by modifying the OP web

browser which uses a message passing interface for communica-

tion between browser components [8]. Non-deterministic events

that need to be recorded fall into two categories: messages from

the browser kernel received by web applications and other external

inputs. OP’s architecture provides the infrastructure to log mes-

sages between processes and enables recording of network replies,

storage operations (both cookies and file system) and user actions.

In this section we describe the challenges we face when applying

the high-level ideas from existing replay systems [14, 21, 7, 6] into

a new application, namely, a web browser.

Execution order: After applying new policies, it may be impos-

sible for the browser to execute the same as the initial recording.

During re-execution, our primary concern is the output of the web

application. To evaluate policies we do not need to constrain the

execution path and allow the execution of the web application to

flow freely.

Missing network requests or function calls: By labeling network

replies with the corresponding URL we can skip replies associated

with unrequested URLs during page execution. Missing functions

are more difficult. To illustrate the difficulty, assume we have two

script fragments S1 and S2 and they both include a call to the ran-

dom number generator (i.e. <script>random()</script>). If

a policy removes S1, we cannot decide which logged value to give

when random in S2 is called. One solution is to label the returned

value with the location of the script element so the browser can

return results for the correct instance of the function call.

Extra network requests or function calls: While less common

than the previous cases, it is possible to encounter causal depen-

dencies in scripts and HTML. An example of a script that could

cause new network requests or function calls to be seen during re-

execution is shown in Figure 2. If the policy removes an element

that is later used for calculation, the resulting function calls or net-

work requests could differ from the recorded session. For new net-

work requests we can either return blank content or let the network

component fetch a new one. Function calls can be dealt in a similar

way to network requests. Either choice indicates that the policy has

introduced differences in the execution of the page and this should

be used to evaluate our security policies.

User actions: During testing, a policy could remove the target

of user actions. If the target of user action is removed, we attempt

if(iframe1) {

iframe1[’src’] = a.com;

foo();

} else {

bar();

}

Figure 2: JavaScript statement that can cause different requests to

be seen during testing. The removal or alteration of the document

can cause different calculations and result in new code being exe-

cuted.

the user action anyway and capture the differences resulted in ex-

ecution. Although the user action could result in new execution,

the presence of these new actions does not invalidate our indent of

testing policies.

User interaction with the browser can present challenges when

testing the execution of web pages. For each user action, the target

of the action must be in the correct state before the user action will

have the desired effect. For example, when performing a mouse

click on top of a button, if the button has not yet been created the

click has no effect. Fortunately, the browser kernel in OP records

all browser level messages and provides total ordering on the mes-

sage log. This guarantees that if a user action is sent to the web

page, the target has already been generated since the network mes-

sage containing the page content has already been delivered.

Our browser-level testing system does have some limitations.

For example, we cannot deal with re-ordering of non-deterministic

function calls, such as random(), inside the same script. Though it

is possible to demonstrate cases where this causes problems for our

testing system but we have not encountered it during our testing.

3.3 Comparing browser instances
One approach to comparing browser instances could be to use

strict equality testing where we verify that browser instances with

and without policies are identical both in page structure and overall

behavior. Although it is desirable to have absolutely no impact on

benign content, it is possible that our policies might impose overly

strict limitations. However, page equality can often be too unfor-

giving and modifications to the page by security policies could still

allow the page to remain completely functional from a user’s per-

spective.

We have developed three metrics to determine if functionality is

lost given that our policy has made a modification to the page. The

first method uses automatic image processing techniques to identify

graphical differences in the rendering of pages. We use the scale-

invariant feature transform (SIFT) [12] to identify keypoints in the

image and match keypoints between images. SIFT is used for many

different image processing applications such as object recognition

and stitching. The result of the SIFT keypoint matching algorithm

is the number of keypoints that match between two images. We

establish a threshold to use for comparison by using SIFT matching

on screenshots of identical web pages.

The second metric examines differences in the parsed document

tree. If the policy removes an element, the resulting document has

obvious differences – the elements removed. Document tree com-

parison can be done strictly, requiring identical leaves in both trees,

or loosely, by comparing the structure and only require the type of

each leaf to be the same.

Monitoring and comparing network requests provides a third

metric for comparing and evaluating the impact of policy on page

execution. During page replay we provide synchronized net-

<HTML>

<HEAD><TITLE>Hello</TITLE></HEAD>

<BODY>

Hi

<SCRIPT>

var pos =

document.URL.indexOf("name=")+5;

var len = document.URL.length;

var name =

document.URL.substring(pos,len);

document.write(name);

</SCRIPT>

</BODY>

</HTML>

Figure 3: A simple web application with DOM-based XSS vulner-

ability.

work and file system state and by recording network requests and

browser persistent state changes we can additionally monitor the

execution of web pages.

4. BROWSER SECURITY POLICIES
Using Alhambra we have developed two policies designed to

prevent cross-site scripting (XSS) attacks. In this section we first

briefly describe XSS attacks (Section 4.1), then our policy that uses

Alhambra’s taint-tracking engine to prevent a class of attacks that

exploit bugs in the client portion of a web application (Section 4.2).

Our second policy (Section 4.3) limits the contents of a document

by observing pages in the browsing history to further limit the po-

tential for attack. We present the results of testing both policies in

Section 5.

4.1 Attack background
We have designed policies to specifically target attacks that orig-

inate on web pages and do not exploit the browser, but instead

leverage browser capabilities to execute attacks against the client

or server. We assume that in general, the authors of the web site are

good-intentioned, though there are bugs in the web application that

allow an attacker to inject content into the page. XSS vulnerabili-

ties allow an attacker to inject content that is executed as JavaScript

by the client.

An XSS vulnerability is a bug in a web page that allows an at-

tacker to inject content into the victim page that is then provided to

a browser and executed. Typically XSS vulnerabilities permit the

injected code to run with the same permissions as any other code on

the page, allowing the attacker’s code to access the victim’s cook-

ies, page content and any other resources protected by same-origin

policy. There are three classes of XSS attacks categorized based on

the method that they are included into the victim page. Reflected

attacks rely on data provided by the browser being inserted into the

page. Reflected attacks are transient as the server does not store the

attack code, but provides it back to the browser. The second class

is a stored XSS attack where the server embeds the attack code into

the page requested by the client but the attack code is stored on the

server and provided independent of the request data. Stored attacks

commonly result from user-created content provided by a web ap-

plication. The third class of XSS attacks are DOM-based attacks

and are similar to reflected attacks except that they exploit a prob-

lem in the scripts included by the page rather than scripts on the

server.

In Figure 3 we show a simple web application with DOM-

based XSS vulnerability. In the example the JavaScript parses

the URL to obtain the visitor’s name and then embeds the

name into the page’s HTML. Assuming this web applica-

tion is hosted at http://www.domxss.com, a URL such

as http://www.domxss.com/#name=Alice would

work as developer intended and print “Hi Alice” in the web

page. However, an attack can be constructed using a URL

such as http://www.domxss.com/#name=<script>

alert(document.cookie)</script> causing the web

application to write the script tag into the document and then

execute it. An exploit such as this can be used by an attacker by

tricking users into visiting the malicious URL.

DOM-based XSS vulnerabilities can be far more complex than

the example; however, the root cause is that a web application’s

client-side logic insecurely uses objects that can be controlled by

attackers. Objects available to the attacker include the one used in

the example, document.URL, and without careful sanitization these
objects can lead to unintentional JavaScript execution, resulting in

an XSS vulnerability.

Malicious payloads that exploit DOM-based XSS vulnerabilities

are not always sent to server making it infeasible to detect them in

the server side. Web application defenses are also difficult, as they

require the web application developer to add sanitization functions

throughout their code. Even if web developers write correct sani-

tization functions it is still possible to miss some cases that result

in JavaScript injection. To mitigate the risks of DOM-based XSS

attacks we use taint-tracking in the browser to prevent XSS vulner-

abilities.

4.2 DOM-based XSS prevention
As we described in Section 4.1, in a DOM-based XSS attack a

malicious payload is injected into the vulnerable web application

during execution by the browser. To prevent DOM-based XSS at-

tacks, we have implemented data flow tracking in the browser and

developed suitable policies in Alhambra to prevent untrusted input

from being executed as JavaScript.

4.2.1 Taint-tracking

In Alhambra, objects originated from untrusted sources are

marked as tainted and taint information is propagated as the web

application interacts with tainted data. Alhambra propagates taint

information at the JavaScript object level and we have extended

both JavaScript and HTML engines to support taint-tracking. In

the JavaScript engine, we have added a field to every JavaScript ob-

ject to indicate if an object is tainted. To propagate taint, we han-

dle three types of operations on JavaScript objects: assignments,

logic or arithmetic operations, and string manipulation. In an as-

signment, the left operand becomes tainted if the right operand is

tainted. For logic or arithmetic operations, the result is tainted if

any of the operands are tainted. For string manipulation, the re-

sulting string is tainted if it contains content from tainted sources.

For example, any substring of a tainted string is tainted as is the

lower case conversion of a tainted string. Similar to Yip et al. [29],

Alhambra does not track of implicit data flows.

In addition to the JavaScript engine, Alhambra also needs to

track data flow inside the HTML engine since JavaScript ob-

jects can be stored in the DOM tree and later retrieved by other

JavaScript. To solve this problem, Alhambra taints the DOM nodes

where tainted JavaScript objects are stored and upon retrieval, taints

the JavaScript objects that interact with the tainted DOM node.

4.2.2 Prevention policy

Policies can specify restrictions on the execution of taint within

the browser using the taint-tracking capability in Alhambra. In this

section we present a policy designed to prevent DOM-base XSS

attacks in web applications.

To prevent DOM-based XSS attacks, DOM objects that can

be controlled by an attacker are marked as tainted. Objects that

we consider tainted are: document.URL, document.referrer,
document.location, and window.location. This policy forbids
the JavaScript engine from executing tainted input by using

propagated taint information. If JavaScript source is constructed

from tainted DOM objects, the interpreter will refuse to execute the

tainted input. Using the example shown in Figure 3, a URL con-

taining a script payload (http://www.domxss.com/#name=

<script>alert(document.cookie)</script>) will

result in the script tag written to the page being tainted. When the

JavaScript engine is invoked to execute the contents of the script

tag, our policy prevents it from executing. In Section 5 we present

the results of evaluating this policy using the Alhambra testing

framework and show that this policy is able to prevent all the

attacks we examined while not introducing any incompatibilities

in other web applications.

4.3 Automatic document structure integrity
The automatic document structure integrity (DSI) policy is cre-

ated using information generated by visiting and analyzing web ap-

plications automatically. Visits to web pages are used to automat-

ically generate policies based on page structure and behavior, and

are designed to prevent content injection attacks, such as XSS and

CSRF attacks. During a brief training phase, we learn the docu-

ment structure of a page, and then during subsequent visits to this

page we enforce this structure, eliminating attacks that perturb the

structure of a page.

This section describes the key design decisions we had to make

when developing policies based on document structure for Alham-

bra. First, we had to choose at what level of granularity to enforce

our policies Second, we had to use properties that will allow us to

converge on a policy quickly.

4.3.1 Policy granularity

Our policies must be fine-grain enough to prevent a wide range

of attacks, and be coarse enough to withstand updates to page con-

tent. To achieve this balance we specify policies that only restrict

potential sites of attack and allow the majority of the page to exe-

cute unhindered.

Our policy generation tools focus on elements that have source

attributes or are easy for attackers to inject or leak information from

a victim site. Plugins, images, scripts, and iframes are examples of

elements that are commonly injected or used to exfiltrate informa-

tion from a victim site. Our policies restrict document structure

in such a way as to prohibit attacks from using these attack vec-

tors. Specifically we target elements with “src” attribute and inline

scripts, and Alhambra enforces their position within the structure

of the document.

We do not require specific structure on other elements, format-

ting, or fonts, and purely cosmetic segments of the page are unre-

stricted by security policy. This enables our policies to withstand

updates by web application developers, which we discuss in Sec-

tion 5.1.2. Large structural changes, such as migration to a con-

tent delivery network, or if the company were to transition to new

infrastructure, would likely introduce changes that our techniques

cannot accommodate.

4.3.2 Policy convergence

The browser must be able to provide a high level of security for

sites while introducing minimal compatibility problems. By us-

ing browsing history, the browser can quickly analyze and provide

security policies for previously unknown sites. The tradeoff in the

speed at which the browser can decide on a policy is directly related

to the diversity of structure on site and impacts the compatibility

of our policies on pages. In general, converging faster provides

a more restrictive configuration with potentially stronger security,

but potentially less compatibility since portions of the site will be

unexplored.

Alhambra aggregates policy data for all pages at sites with the

same second and top level domains (for example portal.acm.

org and www.acm.org) to more quickly converge on a policy. In

Alhambra it is possible to specify policies at many different levels,

including using the origin or the full path of a URL. Automatic DSI

policies are generated using data from all pages seen at a particular

second and top level domain, this policy is then applied using the

same filter on the domain.

When Alhambra encounters elements with “src” attributes, we

generalize each time identical structural elements are seen for dif-

ferent “src” attributes during the training phase. For example, after

seeing an image at sub.a.org and www.a.org we can com-

bine these to allow images from *.a.org. The risk in this type

of generalization is that we could generalize too much, opening the

system up to potential attacks.

One possible enhancement to our overall policy convergence

technique is that large structural changes can be seen by monitoring

the execution of the policy and noting consistent and frequent vio-

lations of the security policy. Using results of the policy violations

we can incorporate changes over time into our policy.

A second possible enhancement is to aggregate data for a set of

users, rather than a single browsing session. This would provide

immediate protection for new sites if other users have contributed

policy data. However, the result is a wider attack surface and a

policy that could allow more functionality than is typically used by

a particular individual.

5. EVALUATION
Alhambra is based on a modified version of the OP web browser

running on top of Linux. OP uses WebKit [26] to handle JavaScript

and HTML and is written in C++. We have instrumentedWebKit to

provide our policy engine with the information required to evaluate

and enforce structural and behavioral policies. Our browser-based

testing system enhances the auditing logs from OP with additional

information to revisit pages from past browsing sessions.

All experiments were conducted on a 2.66GHz Intel Core 2 Duo

with 8GB of memory and a 250GB serial ATA hard drive. The OS

is 64 bit Fedora Core 10, running Linux kernel 2.6.27.

In this section we first present our use of Alhambra to test the

policies in Section 4.2 and Section 4.3 using a few popular web ap-

plications. Then we test the security policies we have developed us-

ing Alhambra against previously reported XSS attacks documented

by the XSSed.org project as well as DOM-based XSS attacks in the

wild. We also provide overall system performance.

5.1 Testing policies
We have used Alhambra to test both automatic DSI policies and

the taint-tracking policy for popular sites that we use on a daily

basis. For sites that offer different services to users with accounts

we either create accounts for testing or use our personal accounts.

We test the policies with two different use cases: basic functionality

and interacting with the web application. Basic functionality tests

Site Test DOM Img Net

www.facebook.com basic 0% Pass 2%

www.facebook.com interactive 1% Pass 4%

docs.google.com basic 0% Pass 9%

docs.google.com interactive 0% Pass 0%

en.wikipedia.org basic 0% Pass 0%

en.wikipedia.org interactive 0% Pass 0%

sfbay.craigslist.org basic 0% Pass 0%

sfbay.craigslist.org interactive N/A N/A N/A

www.cnn.com basic 0% Pass 8%

www.cnn.com interactive 5% Pass 9%

www.amazon.com basic 1% Pass 0%

www.amazon.com interactive 0% Pass 6%

Table 1: Results from testing the automatic DSI policy using Al-

hambra. Percentages indicate the measured difference between re-

play with and without policy, zero percent is the ideal case. For

image comparison, a pass indicates that the SIFT matching indi-

cates they are the same page.

pick simple pages at each site and tests to make sure policy does

not impede viewing the page. Interaction involves user input, such

as typing a message or editing a document and includes navigation

from one page to another. We use recorded browsing sessions and

use the Alhambra testing framework to revisit each of the pages in

the recorded session.

5.1.1 Web application tests

Facebook. As our first case study we choose Facebook, a popu-

lar social networking site. Facebook allows users to create profiles,

applications, and in general edit the content that Facebook profiles

display. To test basic functionality using Facebook we use sessions

that login and browse the site and perform basic actions such as

accessing profile pages. Our test for interacting with the Facebook

application performs a few common actions. First, we change the

status message for our Facebook account. Then we post comments

to friends’ updates and check notifications.

Google. Google offers a number of services beyond the search

portal that offer functionality similar to that of desktop applications.

We login to Google and test the Google Docs document editor. To

test basic functionality we open a document previously saved. Our

test for interacting with Google Docs demonstrates the ability to

write a text document. In our test, we create a new document and

compose a short paragraph, save it and then use the Google pro-

vided UI to format text in the paragraph.

Wikipedia. Wikipedia is an online encyclopedia that allows any-

one to edit and contribute to articles. Basic use of Wikipedia is

simple and involves accessing Wikipedia articles. We access the

special random page that directs the browser to a new random page

at en.wikipedia.org as well as loading the main page. Our

test for interacting with Wikipedia tests the ability to edit an article.

We choose a random document, edit the contents and preview the

modified document.

Craigslist. Craigslist allows users to view and post ads with

very simple markup and formatting. Craigslist has different sites

based on geographic location and is similar to newspaper classi-

fied ads. The test for basic functionality at Craigslist uses the

browser to browse advertisements in the San Francisco bay area

(sfbay.craigslist.org). To test interaction with Craigslist,

we search for and then post an advertisement.

CNN. CNN is a popular news source that hosts free online con-

tent and provides different types of content such as movies, images

and articles. The test for basic functionality at CNN involves ac-

cessing news articles by following a link on the main page. CNN

is not quite an interactive website. For interactive test, we look up

local news.

Amazon. Amazon.com is online store that sells virtually any-

thing. For testing basic functionality at Amazon.com we browse

to a product page. Testing interaction at Amazon.com involves

searching for a product and initiating the checkout process, though

to prevent many unwanted items arriving in two days or less, we do

not complete the checkout process.

5.1.2 Policy compatibility

The remainder of this section presents the compatibility results

for our policies using the user-generated browsing sessions. The

compatibility results for each site tested are presented in Table 1.

For each comparison we provide the percent different from an un-

modified replay of the identical page. For visual differences, we

compare the rendered web pages using the SIFT algorithm and

compare the number of matched keypoints against the values for

a set of training data generated by the same sites. For DOM differ-

ences, we calculate the edit distance between the two DOM trees.

For network differences, we divide the number of omitted network

requests by the total number of network requests. The comparisons

are generated once the page has reached a steady state and after the

interactive session has completed.

DOM-based XSS prevention. The taint-tracking policy that

prevents DOM-based attacks (Section 4.2) does not cause any com-

patibility problems on these pages, and we have additionally tested

this policy for the top 100 sites ranked by Alexa [2]. Table 2

presents the results of testing this policy. On the top 100 sites

we also see no incompatibilities as a result of enforcing our taint-

tracking policy; however, our policy is configured to generate warn-

ings when tainted data is passed to the HTML parser and could re-

sult in a DOM-based XSS attack. Fourteen sites generate warnings,

one of which we constructed an attack to exploit the vulnerability

found. This vulnerability is in a popular website2 and can be used

to inject arbitrary JavaScript into the page. After generating a sam-

ple attack we confirmed that our policy prevents the attack.

Automatic DSI. The automatic DSI policy (Section 4.3) limits

the structure of pages and will modify some pages slightly by re-

moving the elements that violate the automatic DSI policy. For

each of the browsing sessions tested in Table 1 the automatic DSI

policy does not introduce any rendering incompatibilities and over-

all document tree differences are less than 5%. The network has

slightly higher differences, in the case of www.cnn.com 9% of

the network requests differ after the automatic DSI policy is intro-

duced. The network connections that differ due to the policy are

due to some included files conflicting with the automatic DSI pol-

icy and do not cause the page to function differently. The results

of the interactive test for sfbay.craigslist.org show in-

compatibilities. The session being revisited is unable to complete

since the policy introduces slight differences in the rendering of the

page. These small visual differences result in the final user action

(clicking to post an advertisement) missing the button on the page.

Effect of page updates. We also use Alhambra to test the effect

of page updates on the compatibility of our automatic DSI policies

as the document structure of a page can change due to site updates

or other server-side configurations. We use archive.org and

record browsing sessions that visit pages from over one year ago.

Each of the browsing sessions is then revisited to determine the im-

pact on page updates. Unlike our previous tests, we do not have in-

2We have disclosed this vulnerability to the site administrators but
have not been contacted back.

Site False positives Prevented

Amazon 0 N/A

CNN 0 N/A

Craigslist 0 N/A

Facebook 0 N/A

Google 0 N/A

Top 100 sites 0 (14) N/A

DOM-based XSS attacks N/A 10/10

Table 2: The taint tracking policy prevents all of the attacks found

and has zero false positives on our test set and the top 100 sites

reported by Alexa. Fourteen warnings are generated indicating that

tainted data was written to the web page but not executed by the JS

engine.

Site Reported Prevented Percent

Amazon 4 3 75%

CNN 11 8 73%

Craigslist 20 20 100%

Facebook 11 9 82%

Google 9 8 89%

Table 3: The automatic DSI policy prevents many of the XSS vul-

nerabilities reported for the sites shown. The reported XSS column

is the total XSS attacks examined and the prevented column is the

number prevented by automatic DSI policy.

teractive browsing sessions for these pages since archive.org

does not run the server-side components to the web applications.

We found that all of the automatic DSI policies we generated in-

troduce no more changes than we found on current pages (Section

5.1).

5.2 Security analysis
DOM-based XSS prevention. We have tested our taint-tracking

policy against publicly disclosed attacks and examples of DOM-

based XSS attacks. Table 2 shows the results of testing this policy.

We test against five documented XSS attacks disclosed for popular

services. We also generate five synthetic attacks based on examples

used to demonstrate DOM-based XSS attacks. For both sets of at-

tacks our policy successfully prohibits the execution of the injected

script.

Automatic DSI. We have evaluated our automatically created

document structure policies against a number of previously doc-

umented XSS attacks by XSSed.org [27]. Table 3 presents the

results of our evaluation. For each site we examine the most re-

cent reported XSS vulnerabilities and test the vulnerable page using

our automatically generated policies for each site. A few reported

attacks for each site failed to demonstrate an exploit even on an

unmodified browser and those have been removed from the data

set. There were no archived attacks for en.wikipedia.org on

XSSed.org so we have omitted it from Table 3. Additionally, the

XSS vulnerabilities reported for Craigslist all exploited the same

bug but at different subdomains.

Our policies can prevent many forms of XSS and inclusion at-

tacks though there are still possibilities for attackers succeed. Our

automatic DSI policy does not inspect the contents of script ele-

ments and an attacker can insert malicious content that mimics the

same document structure as the benign pages. One of the Facebook

XSS attacks that was not prevented, injected an inline <script>
into the header, a location where the policy allowed script elements.

5.3 Performance
To evaluate the performance of Alhambra, we isolate the effects

of the taint-tracking modifications and structural policy enforce-

ment. To support taint-tracking policies the only overhead added is

the manipulation of the extra field to propagate taint in JavaScript

objects or DOM nodes. Our performance tests indicate that there

are no measurable latencies added to support taint tracking.

Enforcing document structure policies has two different points

where latency can be introduced. The first is during a change to the

document causing the structural policy to be checked. The second

is during JavaScript accesses to DOM methods and properties. We

add no measurable overhead for the applications we have tested

except for Facebook, which adds around 2x overhead during the

parsing stage and none during execution. Most of the overhead in-

curred by enforcing policies is seen during the parsing phase when

the document is built because for each addition to the document

tree, the HTML engine checks to ensure that the addition does not

cause a policy violation. In our current implementation we check

the entire document each time. A simple optimization would be to

check if only the added element violates our security policy, reduc-

ing the overhead significantly.

6. RELATED WORK
The closest work to ours are other systems that use testing

and replication to detect problems with security policy. Dopple-

ganger [20] is one such system that applies fine-grain policies to

cookies and uses a parallel browser for backup when a cookie pol-

icy is unknown. When Doppleganger does not have a cookie policy,

two browsing sessions are maintained, one with a restrictive cookie

policy and one without. If differences in the page are detected the

user is prompted to choose the desired functionality. Doppleganger

uses a simple replay system when not mirroring the session to gen-

erate the page. In contrast, our reply system removes server and

client-side non-determinism and uses replay to detect modifications

made by security policies.

XSS prevention. There has been extensive research in preventing

and detecting XSS attacks. In a recent work, Nadji et al. use doc-

ument structure information provided by the server and client side

taint-tracking mechanisms to enforce the provided document struc-

ture integrity properties during page execution [16]. Similarly, we

use concept of document structure to mitigate attacks though we

are able to do so by determining the structure automatically and

without added server help. Our techniques also require no changes

to the contents of pages.

NoScript [13] is a Firefox extension that includes limited XSS

prevention and other useful security features. The current version

of the extension supports automatic prevention of many reflected

XSS attacks by inspecting and sanitizing parameters in the URL.

In addition to reflected XSS attacks, NoScript has the potential to

block almost any XSS attack since it can selectively enable and dis-

able JavaScript for parts of a page though this must be configured

manually. Like NoScript, the IE 8 XSS filter performs heuristic

matching on URL contents to prevent reflected XSS attacks.

Different approaches for client side prevention include filter-

ing, taint tracking and content blocking. Noxes [11] is a client-

side proxy that filters outgoing network requests based on a dy-

namic white list assembled for each page. Noxes primarily tar-

gets information leakage attacks and could experience high incom-

patibility due to the aggressive denial of dynamically created net-

work requests. Vogt et al. use client-side taint-tracking to iden-

tify requests that leak sensitive information across domain bound-

aries [24]. Their technique works inside of the browser and pro-

vides security alerts when sensitive information is sent to a third-

party domain.

Other techniques have been developed for server-side XSS pre-

vention and modify the page so that it can be delivered safely to

the client. Blueprint [23] provides a safe method for delivering

content to browsers using server side techniques and JavaScript.

By delivering unauthorized content to browsers in a manner that

prevents JavaScript execution XSS attacks can be defeated. XSS-

GUARD [5] employs a browser framework on the server-side out-

put to identify and remove malicious scripts that are not intended by

the web application. Xu et al. use taint-tracking to provide security

policies with added information to make server-side decisions [28].

Using taint-tracking, the authors show that they are able to defeat

attacks using their techniques. These techniques all operate using

server-side additions to provide security and with some modifica-

tions could be used in addition to Alhambra to provide stronger

attack prevention.

BEEP [10] and Noncespaces [9] are hybrid methods that modify

both browser and web server to provide resistance to web applica-

tion attacks. Noncespaces is able to differentiate between untrusted

and trusted content in pages using XML namespaces. Noncespaces

modifies the web application to use XML namespaces and provides

a policy to the browser restricting XHTML. BEEP uses policies to

determine which scripts should execute and the browser consults

with server and provided policy when executing to ensure that at-

tackers are unable to inject scripts. These approaches have similar

goals to ours, however, Alhambra does not require server modifica-

tions and uses document structure to restrict pages.

Taint-tracking or data flow tracking has been used extensively to

improve application security. To the best of our knowledge, Alham-

bra is the first one to use taint-tracking to prevent DOM-based XSS

attacks. Existing techniques such as Perl supports a taint-mode [17]

to prevent unsafe use of untrusted input. Sekar [19] provides an

effective and language-independent taint-tracking approach to pre-

vent injection attacks. Resin [29] is another tool that tracks data

flow to propagate policies to improve application security. How-

ever, Resin only requires that untrusted data be sanitized to prevent

XSS vulnerabilities and assumes the correctness of the sanitization.

7. CONCLUSION
We have presented a client-side architecture for the enforcement,

creation and testing of browser security policies. Alhambra demon-

strates two new policies that successfully prevent XSS attacks and

work without modifications to the server. We have also demon-

strated a testing framework that uses user-generated browsing ses-

sions to measure the effects of security policy on the compatibility

of web applications. Using our testing system we can examine web

applications in detail to ensure that not only is the rendering not af-

fected by security policy, but the application functionality remains

intact.

8. ACKNOWLEDGMENTS
Wewould like to thank Anthony Cozzie for feedback on an early

draft of this paper and we would like to thank Chris Munger for

coming up with the Alhambra name. This research was funded

in part by NSF grants CNS 0834738 and CNS 0831212, grant

N0014-09-1-0743 from the Office of Naval Research, Intel and Mi-

crosoft under the Universal Parallel Computing Research Center,

and AFOSR MURI grant FA9550-09-01-0539. Chris Grier was

funded partially by NSF grants NSF-0433702 and NSF-0831535.

9. REFERENCES
[1] W3C Document Object Model.

http://www.w3.org/DOM/.

[2] Alexa Internet, Inc. Alexa top 500 global sites.

http://www.alexa.com/topsites.

[3] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,

E. Kirda, C. Kruegel, and G. Vigna. Saner: Composing static

and dynamic analysis to validate sanitization in web

applications. In Proceedings of the 2008 IEEE Symposium

on Security and Privacy, pages 387–401, Washington, DC,

USA, 2008. IEEE Computer Society.

[4] A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses for

cross-site request forgery. In Proceedings of the 15th ACM

conference on Computer and communications security,

pages 75–88, New York, NY, USA, 2008. ACM.

[5] P. Bisht and V. Venkatakrishnan. XSS-GUARD: Precise

Dynamic Prevention of Cross-Site Scripting Attacks. In

Detection of Intrusions and Malware, and Vulnerability

Assessment: 5th International Conference, Dimva 2008,

Paris, France, July 10-11, 2008, Proceedings, page 23.

Springer, 2008.

[6] T. C. Bressoud and F. B. Schneider. Hypervisor-Based

Fault-Tolerance. In Proceedings of the 1995 Symposium on

Operating Systems Principles, pages 1–11, December 1995.

[7] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M.

Chen. ReVirt: Enabling Intrusion Analysis through

Virtual-Machine Logging and Replay. In Proceedings of the

2002 Symposium on Operating Systems Design and

Implementation (OSDI), pages 211–224, December 2002.

[8] C. Grier, S. Tang, and S. T. King. Secure web browsing with

the op web browser. In Proceedings of the 2008 IEEE

Symposium on Security and Privacy, 2008.

[9] M. V. Gundy and H. Chen. Noncespaces: Using

randomization to enforce information flow tracking and

thwart cross-site scripting attacks. In Proceedings of the

Network and Distributed System Security Symposium,

February 2009.

[10] T. Jim, N. Swamy, and M. Hicks. Defeating script injection

attacks with browser-enforced embedded policies. In

Proceedings of the 16th international conference on World

Wide Web, 2007.

[11] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes: a

client-side solution for mitigating cross-site scripting attacks.

In SAC ’06: Proceedings of the 2006 ACM symposium on

Applied computing, pages 330–337, New York, NY, USA,

2006. ACM.

[12] D. Lowe. Distinctive image features from scale-invariant

keypoints. International Journal of Computer Vision,

60(2):91–110, 2004.

[13] G. Maone. NoScript - JavaScript/Java/Flash blocker for a

safer Firefox experience!, 2008.

http://noscript.net/.

[14] P. Montesinos, M. Hicks, S. T. King, and J. Torrellas. Capo:

Abstractions and software-hardware interface

hardware-assisted deterministic multiprocessor replay. In

Proceedings of the 2009 Symposium on Architectural

Support for Programming Languages and Operating Systems

(ASPLOS), March 2009.

[15] Mozilla. Security/csp, 2009.

https://wiki.mozilla.org/Security/CSP.

[16] Y. Nadji, P. Saxen, and D. Song. Document structure

integrity: A robust basis for cross-site scripting defense. In

Proceedings of the Network and Distributed System Security

Symposium, February 2009.

[17] Perl.org. Perl taint mode.

http://perldoc.perl.org/perlsec.html.

[18] D. Ross. IEBlog : IE8 Security Part IV: The XSS Filter,

2008. http://blogs.msdn.com/ie/archive/

2008/07/01/ie8-security-part-iv-the-xss-

filter.aspx.

[19] R. Sekar. An efficient black-box technique for defeating web

application attacks. In Proceedings of the 16th Annual

Network and Distributed System Security Symposium,

February 2009.

[20] U. Shankar and C. Karlof. Doppelganger: Better browser

privacy without the bother. In Proceedings of the 13th ACM

conference on computer and communications security

(CCS), 2006.

[21] S. Srinivasan, S. Kandula, C. Andrews, and Y. Zhou.

Flashback: A light-weight rollback and deterministic replay

extension for software debugging. In Proceedings of the

2004 USENIX Technical Conference, June 2004.

[22] Symantec. Symantec Global Internet Security Threat Report

Trends for July-December 07, April 2008.

http://www.symantec.com/business/theme.

jsp?themeid=threatreport.

[23] M. Ter Louw and V. Venkatakrishnan. Blueprint: Robust

prevention of cross-site scripting attacks for existing

browsers. In Proceedings IEEE Symposium on Security and

Privacy, May 2009.

[24] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel,

and G. Vigna. Cross-Site Scripting Prevention with Dynamic

Data Tainting and Static Analysis. In Proceeding of the

Network and Distributed System Security Symposium

(NDSS), San Diego, CA, February 2007.

[25] H. J. Wang, X. Fan, J. Howell, and C. Jackson. Protection

and communication abstractions for web browsers in

mashupos. In Proceedings of the 21st ACM Symposium on

Operating Systems Principles (SOSP), Oct 2007.

[26] WebKit. The webkit open source project.

http://www.webkit.org.

[27] XSSed.com. XSSed - XSS (cross-site scripting) information

and vulnerabile websites archive. http://xssed.com.

[28] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy

enforcement: A practical approach to defeat a wide range of

attacks. In Proceedings of the 15th USENIX Security

Symposium, August 2006.

[29] A. Yip, X. Wang, N. Zeldovich, and F. Kaashoek. Improving

application security with data flow assertions. In Proceedings

of the 22nd ACM Symposium on Operating Systems

Principles, October 2009.

