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ABSTRACT

The Web is now the dominant platform for delivering interactive applica-

tions to hundreds of millions of users. Correspondingly, web browsers have

become the de facto operating system for hosting these web-based applica-

tions (web apps). Unfortunately, web apps, browsers, and operating systems

have all become popular targets for web-based attacks, intensifying the need

for secure web browsing systems.

Current research efforts to retrofit today’s web browsers help to improve

security, but fail to address the fundamental design flaws of current browsing

systems. To overcome those issues, in this dissertation, we rethink the way

we build secure browsing systems, hoping to define the principles that should

be followed.

To achieve this goal, we strive to learn through building experimental

systems for secure web browsing. Specifically, we design and implement

a new operating system and a new web browser. We also investigate other

generic approaches to help secure these systems even further, including formal

methods and heuristics.

The first system we build is called the Illinois Browser Operating System

(IBOS). IBOS is an operating system co-designed with a new browser that

reduces the trusted computing base for web browsing. We demonstrate that

by exposing browser-level abstractions directly at the lowest software layer

– the OS kernel – we are able to remove almost all traditional OS compo-

nents and services from our trusted computing base. We show that this

architecture is flexible enough to enable new browser security policies, can

still support traditional applications and adds little overhead to the overall

browsing experience.

We also propose the OP2 secure browser architecture that can be used

on top of commodity operating systems. We combine operating system de-

sign principles with formal methods to design this secure web browser by
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drawing on the expertise of both communities. Our design philosophy is to

partition the browser into smaller subsystems and make all communications

between subsystems simple and explicit. At the core of our design is a small

browser kernel that manages the browser subsystems and interposes on all

communications between them to enforce our new browser security features.

Through the experiences of building these systems, we are able to sum-

marize the principles of building secure browsing systems: 1) make security

decisions at the lowest layer of software and make it simple; 2) enforce strong

isolation between distinct browser-level components; 3) employ simple and

explicit communication between components; 4) provide the right set of op-

erating system abstractions; 5) maintain compatibility with current browser

standards; 6) expose enough browser states and events to enable new browser

security policies.

Overall, we demonstrate in this dissertation that, by following these prin-

ciples, our new browsing systems are not vulnerable to many forms of web-

based attacks. We believe that the work presented in the dissertation makes

one step towards secure web browsing.
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CHAPTER 1

INTRODUCTION

Improving security is one of the greatest challenges and most important tasks

across all domains in today’s computing. This dissertation focuses on the

security of web browsing. Specifically, we design and implement a new op-

erating system and a new web browser to illustrate the general principles of

building secure browsing systems.

1.1 Motivation

The Web has become a focal point in our daily lives. Tremendous amount

of sensitive information is transmitted via the Web, signifying the demand

of secure web browsing.

However, web-based applications (web apps), browsers, and operating sys-

tems have become popular targets for web-based attacks. Vulnerabilities in

web apps are widespread and increasing. For example, cross-site scripting

(XSS), which is effectively a form of script injection into a web app, recently

overtook the ubiquitous buffer overflow as the most common security vul-

nerability [96]. Vulnerabilities in web browsers are less common than in web

apps, but still occur often. For example, in 2009 Internet Explorer, Chrome,

Safari, and Firefox had 349 new security vulnerabilities [94], and attackers

exploit browsers commonly [67, 77, 78, 94, 105]. Vulnerabilities in libraries,

system services, and operating systems are less common than vulnerabilities

in browsers, but are still problematic for modern systems. For example, libc,

Gtk, Linux, and X had 114 new security vulnerabilities in 2009 [1]. And

evidence has already shown that they can be used by web-based exploitation

to subvert the operating system kernel [12].

The cost of web-based attacks is extensive to both organizations and in-

dividuals. For organizations, it leads to loss of customer confidence, trust,
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and reputation, with the consequent harm to brand equity, revenue, and

profitability. It could also come with the cost related to repairing the dam-

age done and securing the compromised web apps. For individuals, it could

result in credit card fraud, identity theft, and subsequent financial loss. In ex-

treme cases, one could even face legal liability if the attacker uses web-based

exploitation, remotely controlling the victim’s computer to attack other com-

puters.

On one hand, the web-based attacks are prevalent because the Web is

popular and attacking it is profitable [95]. Web browsers provide a simple and

convenient interface to access the content and services in the Web, bringing

in an unprecedented number of computer users. Today, both traditional and

emerging businesses rely on the Web to deliver content and sell product to

their customers. However, web apps have been developed and deployed with

minimal attention given to security risks, resulting in a surprising number of

web sites that are vulnerable to hackers [94]. The ease of accessing sensitive

information through attacking the Web certainly stimulates the exploitation.

On the other hand, traditional browsing systems fail to provide sufficient

protection, which also contributes to the trend of exploitation. In this dis-

sertation, we refer browsing system to the whole client-side software stack

that enables web browsing, including the web browser, runtime libraries, OS

services, and kernel. Traditional browsing systems could not meet of require-

ments of secure web browsing because:

• The design and architecture of traditional web browsers are fudemen-

tally flawed. Traditional web browser design still roots in the origi-

nal model of browser usage where users viewed several different static

pages and the browser itself was the application. However, recent web

browsers have evolved into a platform for hosting web apps, where each

distinct page (or set of pages) represents a logically different applica-

tion. The single-application model provides little isolation or security

between these distinct applications.

• Traditional web browsers have wide attack surfaces. Browsers run un-

trusted web apps from all over the Internet, host external applications

for rendering non-HTML content (i.e., plugins), and interact with other

applications on the system. These interactions are often implicit, and

can be carried out using various communication channels. As a result,
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it is infeasible to monitor them, resulting possible avenues for attack.

• Commodity operating systems fail to regulate the behavior of web

browsers. Commodity operating systems provide a set of general-

purpose abstractions, often overly permissive, to browsers. Without re-

strictions, a compromised browser component can be further exploited

to affect other parts of the browsing system, including the operating

system itself. For example, a compromised HTML engine could down-

load a malware and use the exec() Linux system call to execute it.

Based on the above observation, we argue that to address these problems

fundamentally and achieve the desired security of web browsing, a resign of

web browser and operating system is required.

1.2 Thesis and contributions

My thesis is:

General operating system design principles and techniques can be

used to help building browsing systems that improve the security

of web browsing.

To support this thesis, we embrace microkernel [50], Exokernel [34], safety

kernel design principles, heuristic, and formal methods to build new brows-

ing systems from scratch to illustrate how to enable secure web browsing.

Through the experiences of building these systems, we are able to summa-

rize a set of design and architecture principles that should be followed when

building a secure browsing platform that is required to protect the web apps,

the browsers, and the underlying operating systems.

1. Make security decisions at the lowest layer of software and make it

simple. Security vulnerabilities are commonplace and costly across all

layers in the software stack. It is necessary to provide protection for all

the layers. However, without securing the lowest layer, it is impossible

to provide guarantee for other layers built on top of it. Ideally, a

secure system should have a simple lowest layer responsible for all the

security decisions. By doing this, we could have a small and potentially

verifiable TCB for the whole system, thus improving the overall security

assurance.
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2. Enforce strong isolation between distinct browser-level components.

Providing isolation between browser-level components reduces the like-

lihood of unanticipated and unaudited interactions and allows us to

make stronger claims about general security and the specific policies

we implement. Specifically, the browser should be decomposed into

several subsystems, each of which performs dedicated functions (e.g.,

HTML rendering, cookie management) and runs in its own protection

domain. At the same time, web apps that come from different sources

should also be isolated as they represent different principals in the Web.

3. Employ simple and explicit communication between components. Clean

separation between functionality and security with explicit interfaces

between components reduces the number of paths that can be taken

to carry out an action. This makes reasoning about correctness,

both manually and automatically, much simpler. We argue that a

microkernel-like architecture should be adapted to enforce explicit com-

munications between different components. Meanwhile, a microkernel-

like architecture also enables using formal methods as a practical

methodology for validating browser system design and implementation.

4. Provide the right set of operating system abstractions. A fudemental

problem of using commodity operating systems as the building bases

for secure browsing systems is that they often expose a set of overly per-

missive interfaces for browser-level components. Typically, one could

use rule-based OS sandboxing mechanisms to restrict these compo-

nents. However, sandboxing systems can be complex (the Ubuntu

10.04 SELinux reference policy uses over 104K lines of policy code)

and difficult to implement correctly [38, 97]. Given the opportunity of

redesigning the whole browsing system, we argue that one should follow

the Exokernel principles to expose the set of OS abstractions that are

just enough for web browsing to avoid further use of OS sandboxing.

5. Maintain compatibility with current browser standards. Even though

we are building a new browsing system, our primary goal is to improve

the enforcement of current browser policies without changing current

web apps. Current web apps already provide a rich set of features and

were designed according to existing security policies. Without proper
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backwards compatibility support, it is impractical for users to accept

the new system. Meanwhile, traditional desktop applications provide

an alternative set of functionalities. We argue that a browsing sys-

tem should provide adequate support for them and enforce controlled

sharing between web apps and traditional apps.

6. Expose enough browser states and events to enable new browser security

policies. The Web is fast evolving. Browsing system should be flexible

to adapt to the evolution. Consequently, a desired architecture should

expose enough browser states and events to the lowest layer to enable

novel browser security policies. Nevertheless, web developers have been

slow to use these new browser security features [90]. Fortunately, with

those states and events, one could use simple heuristics to add protec-

tions to web apps automatically at the client side. We validate this

claim through multiple examples shown in this dissertation.

Following these six principles, we design and implement the Illinois Browser

Operating System (IBOS) – an operating system and web browser co-

designed to reduce drastically the trusted computing base for web browsers

and to simplify browsing systems. To achieve this improvement, we build

IBOS with browser abstractions as first-class OS abstractions and removed

traditional shared system components and services from its TCB.

In addition, we demonstrate a secure browser architecture – the OP2 web

browser that can be used when a specialized operating system is not desired.

OP2 adopts a microkernel-like design to enforce strong isolation and explict

communications between browser components to improve browsing security.

We also show a generic browser-based mechanism for adding protection to

legacy web apps and how to use formal methods to help design of browsing

systems.

Overall, by design, our new systems are not vulnerable to many forms of

web-based attacks, making one step towards secure web browsing.

1.3 Dissertation organization

In this dissertation, we discuss designing and implementing client-side sys-

tems to advance the state of the art in secure web browsing.
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In Chapter 2, we provide background material around the Web. As this

dissertation focuses on the principles of building browsing systems, we present

common architectures of operating systems and web browsers. We also dis-

cuss previous work on web app security, browser security, operating system

security, and applying formal method to browsing systems.

In Chapter 3, we present an operating system and a browser co-designed

using principles from both microkernel and Exokernel to reduce drastically

the TCB for web browsers and to simplify browsing systems.

In Chapter 4, we show how to use microkernel-like design to build a secure

web browser, and how to make it practical in terms of compatibility and

performance.

In Chapter 5, we discuss how to only use information available at the client

side to improve the security of web apps. And we use four case studies to

show that our approaches are simple yet effective.

In Chapter 6, we discuss how to use formal method to validate of design of

secure web browser. We also examine the possibility of verifying IBOS TCB.

In Chapter 7, we present the security analysis and performance evalua-

tion of our systems. We show that our design is able to achieve improved

protection without sacrificing performance.

We discuss potential future directions in Chapter 8, and conclude in Chap-

ter 9.
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CHAPTER 2

BACKGROUND AND RELATED WORK

Security has been a goal of computer systems designers for a long time. As

the Web become increasingly popular, software systems for web browsing

have become the dominant sources of computer vulnerabilities. Our work

therefore focuses on improving the security of web browsing.

In this chapter, we present background material on building secure brows-

ing systems. First, we provide the definitions of web-based applications and

trused computing base. We then discuss web-based attacks and how com-

mon operating system architectures and browser architectures handle them.

Finally, we describe previous approaches to improving general web security.

2.1 Definitions

In this section, we describe the definitions and background information about

web-based applications and trusted computing base.

2.1.1 Web-based application

When the Web was first invented, it was a collection of static web pages. Now,

the Web is the dominant platform for delivering interactive applications.

By definition, a web app is an application that is accessed via the Web

using primarily HTTP (Hypertext Transfer Protocol) connections and hosted

primarily in web browsers.

The World Wide Web’s markup language has always been HTML (Hy-

perText Markup Language). Although HTML was primarily designed as a

language for semantically describing scientific documents, its general design

and adaptation over the years have enabled it to become the dominating

language for describing the structure of web pages.
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HTML itself in most cases is not adequate to specify all of features of

today’s web apps. For complement, extensibility mechanisms (e.g., plugins)

have been developed. At the same time, HTML specifications are also being

updated to include new features, such as video support, to address the issues

of web development raised in the past few years [101].

In general, plugins are external applications that browsers use to render

non-HTML content. One common example of a plugin is the Flash player

that enables browsers to play Flash content. One can treat plugins as tra-

ditional desktop applications or libraries, except that they are launched by

the browser and the system gives them access to browser states and events

through a standard plugin programming interface, called the NPAPI [2].

CSS, Document Object Model (DOM), and JavaScript have also been de-

veloped as the complements to HTML to provide enough power for developing

interactive and user-friendly web apps.

CSS, which stands for Cascading Style Sheets, is a style sheet language

used to express styles that define how to present web pages, including colors,

layout, and fonts. CSS provides a powerful, yet flexible, mechanism, helping

web apps to match the look and feel of desktop applications.

The DOM is a representation – a model – of the document and its con-

tent. The DOM is not just an API; operations on the in-memory HTML

document are also defined. HTML elements in the DOM implement and

expose a series of interfaces to scripts to make the documents themselves

programmable. DOM also provides the interface of XMLHttpRequest to al-

low scripts to programmatically connect back to their originating server via

HTTP.

JavaScript is the predominant client-side script language for web apps.

JavaScript utilizes the interfaces exposed by the DOM to dynamically change

the web pages, resembling interactive traditional desktop applications. For

example, together with XML and the XMLHttpRequest capability, Asyn-

chronous JavaScript and XML (AJAX) is used to allow web apps to retrieve

data from the server asynchronously in the background without interfering

with the display and behavior of the existing page, thus enabling interactive

applications.

The Web, as a multi-users platform, requires a mechanism to authenticate

and distinguish different users. The most commonly used method is cookie.

A cookie, or an HTTP cookie, is a piece of text stored on a user’s computer by
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his or her browser, typically consisting of one or more name-value pairs that

the server and client pass back and forth. Initially developed as a method for

implementing reliable virtual shopping carts, cookies were later pervasively

used as the de facto way of authenticating users to web sites and storing the

login information so that a web user does not have to keep entering their

username and password each time he or she visits a same web site. Cookies

can also be used to store identifiers so that web servers can track what the

users have done during the visit.

2.1.2 Trusted computing base

In computer security terminology, the trusted computing base is the set of

all hardware, software and procedural components that enforce the security

policy. Consequently, a compromised TCB would jeopardize the security

properties of the entire system. While parts of a computer system outside

the TCB, regulated by security policies, could only incur limited damage

within the privileges granted to them.

Design and implemention of the system’s TCB is critical to overall system

security. Modern operating systems strive reduce the size of their TCB so

that manual review or formal verification of the TBC could be feasible.

Systems without all of their TCBs as part of their design do not provide

security of their own. They are secure only when the external means provide

required security. For example, a cryptography algorithm that uses private

key to encrypt would require the key to be securely kept in the memory.

If a successful memory-based attack is able to steal the key, the encryption

could no longer provide the security assurance even if the algorithm itself is

flawless.

Similarly, mechanisms developed to protect web apps in the browsers would

be only as secure as the browsers (or the underlying operating systems)

themselves. Consequently, to improve the security of web browsing, we have

to carefully design and implement the TCB of our browsing systems.
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2.2 Web-based attacks

Unfortunately, current browser security policies and browsing systems are

not always effective at guarding the Web. Several attacks operate without

violating those policies. Besides attacking scenarios that target only to the

Web, attackers can also use the Web as the medium to carry out traditional

attacks such as using the method of so-called “drive-by download”. The Web

also provides a perfect avenue for social engineering attacks. One example

is phishing, in which the attacker creates a fake website that has almost

identical look and feel to the legitimate one, in order to fool users to give in

sensitive information such as usernames, passwords and credit card details.

In this section, we discuss the same-origin policy (SOP) and present details

about XSS and drive-by download. We leave other policies and attacks to

be discussed inline in later chapters when necessary.

2.2.1 The same-origin policy

The primary security policy that all modern browsers implement is the SOP,

in which most security decisions are predicated on the origin of the web apps.

An origin of a web app is define as the <protocol, domain name, port>

tuple of the uniform resource locator (URL) it originates from. Loosely

speaking, the SOP acts as a non-interference policy for the Web and provides

isolation for web pages and states that come from different origins. If the

browser runs one web app from victim.com and another from attack.com,

the browser isolates these two web apps from each other. Unfortunately,

Chrome, IE8, Safari, and Firefox all enforce the SOP using a number of

checks scattered throughout the millions of lines of browser code and current

browsers have had trouble implementing the SOP correctly [25].

In a browser, a frame is a container that encapsulates a HTML document

and any material included in that HTML document. Web pages are frames,

and web developers can embed additional frames within web pages – these

frames are called IFRAMEs. Developers can include IFRAMEs from the same

origin as the hosting frame, or from a different origin. Each frame is labeled

with the origin of the main HTML document used to populate the frame,

meaning that a cross-origin IFRAME has a different label than the hosting web

page.

10



In general HTML documents include references to network objects that

the browser will download and display to form the web page. These network

objects can be images, JavaScript, and CSS. Browsers can download these

objects from any domain and the browser labels them with the origin of the

hosting frame. For example, if a page from uiuc.edu includes a script from

foo.com, that script runs with full uiuc.edu permissions and can access

any of the states in that web page. Browsers can also download HTML

documents and other objects using XMLHttpRequests (used for Ajax), but

the SOP dictates that these objects must come from the same origin as the

hosting frame.

2.2.2 XSS

XSS is effectively a form of code injection attack, where an attacker injects

malicious scripts into the victim web app and operates using the victim’s

origin and credentials. Some potential damage an XSS could cause includes

stealing the victim’s credentials, gaining elevated access privileges to sensitive

page content, and carrying out actions on behalf of the victim. In fact, XSS

is the most prevalent vulnerability on modern computer systems, accounting

for more vulnerabilities than all other vulnerabilities combined [96]. There

are three types of XSS attacks:

Persistent XSS Attackers inject malicious code into a Web app in the

server side and are able to affect all the users that use the web app. Typical

affected websites are public Internet forums or Wiki-like sites. An attacker

could submit content of JavaScript (which should be plain text or legitimate

HTML code) to web servers and every user that visits the site would be

affected by the malicious JavaScript code.

Reflective XSS User supplied data can be used to generate a temporary

page sent back to the same user. If the user supplied data is not properly

sanitized and it contains, for example, malicious JavaScript code, the user

could subjected to reflective XSS attack. In a simple attack scenario, the

attacker could foul the victim to click a URL with a malicious payload that

can be embedded in the web page delivered to the victim.
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DOM-based XSS This type of XSS can be similar to reflective XSS and

may have been overlooked. Instead of generating a malicious page by the

server side logic (e.g., a PHP), attackers can leverage client side logic to

effectively deliver attack code. We will discuss more details of this type of

XSS in Chapter 5.

2.2.3 Drive-by download

Drive-by download means unintended download occurs during visiting a web-

site. In usual case, it is used to download malware for nefarious purpose. It

could happen when a user authorizes the download but without understand-

ing the scene behind or the consequences. For example researchers from

Google found that attackers fool users into downloading and executing mali-

cious content from adult web sites by making them think they are installing a

new video codec in an attempt to view “free” videos [78]. It could also mean

download of spyware, a computer virus or any kind of malware that happens

without a person’s knowledge. Current web technology enables high-degree

dynamic content. One can easily use JavaScript to initiate download auto-

matically without consent from user.

Drive-by download can also happen in legitimate websites. Buying adver-

tisements, for example, can sometimes allow attackers to have their malicious

code included in pages that display the advertisements [77]. Also, by exploit-

ing security vulnerabilities in web apps, attackers can often automatically

modify these sites to host their malicious code. The downloaded content

does not need to be executable binaries either. For example, in a recent iOS

vulnerability, the attacker can simply serve a specifically crafted PDF file to

exploit victims’ operating systems [12].

2.3 Operating system architectures

As the browser transforms into a platform of hosting web apps, it becomes the

de facto operating system. Before diving into different design decisions of the

browsers themselves, we first look at common operating system architectures

to discuss how they could accommodate web browsers and what we can learn

from them.
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Generally speaking, operating system (or the kernel) manages computer

hardware resources, and provides common services for execution of various

application software. These management logics are often called operating

system services. Depending on the organization of these services, we have

different types of kernel architectures.

2.3.1 Monolithic kernel

A monolithic kernel includes all (or at least, most) of its services in a single

privileged address space – the kernel space. Consequently, all the services

run as supervisor mode and can modify any other parts in the operating

system. Some examples are Linux, BSD, and early Windows versions (95, 98

and ME).

One advantage of this architecture is performance superiority. Since all

the services reside in the same address space, there is no context switching

overhead in the kernel for managing different types of resources.

This architecture, on the other side, is not quit flexible as all the man-

agement logics are in a single binary. To alleviate the problem, modern

monolithic kernel enables “loadable module”, such as Linux.

Fundamentally, this architecture of operating system is no different from

that of a user-level application (such as traditional web browsers). Since

everything runs in the same address space, if any component is compromised,

the security of the whole system is jeopardized.

2.3.2 Microkernel

A Microkernel tries to run most services, like network stacks, file systems,

etc., as servers in user space. The kernel only provides basic services that

are needed to implement the whole operating system – memory allocation,

scheduling, and inter-process communication (IPC).

This architecture often result a minimal amount of software in the kernel

address space. When the correctness of this small kernel is assured, this

architecture has the advantage of providing highly guaranteed reliability and

security. Naturally, every OS services runs in its own user-level address space.

When one crashes, it is hard for it to affect other parts in the system.
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In the context of security the minimality principle of microkernels is a

direct consequence of the principle of “least privilege”. A smaller kernel as

the TCB also leads to an easier and feasible effort to formal verification [57].

While services could still be compromised, the kernel is able to ensure that

they could only incur damages confined within the privileges provided.

A drawback is the amount of messaging and context switching involved,

which makes microkernels conceptually slower than monolithic kernels. How-

ever, when security is highly desired and usage scenario would not incur

frequent context switching (e.g., computation intensive rather than I/O in-

tensive), this architecture is preferred.

Operating systems designed to reduce the trusted computing base for ap-

plications are not new and typically choose the microkernel-like architecture.

For example, several recent OSes propose using information flow to allow

applications to specify information flow policies that are enforced by a thin

kernel [32,59,112]; KeyKOS [21], EROS [88], and seL4 [57] provide capability

support using a small kernel; and Microkernels [40, 50, 51] push typical OS

components into user space.

In IBOS, we apply these principles to a new application – the web browser

– and include support for user interface components and window manager

operations. Also, these previous approaches support general purpose security

mechanisms, like information flow and capabilities, and shared resources and

device drivers are part of the TCB. The IBOS security policy is specific to

web browsers, and although this is less general, we can track this policy to

hardware abstractions and can remove drivers and other shared components

from IBOS TCB.

At the same time, for our standalone secure browser design, we also choose

a microkernel-like architecture. Using a secure architecture like in OP2, we

are able to enforce the clear separation between functionality and security,

employing a small “browser kernel” to provide overall security assurance of

the web browser.

2.3.3 Hybrid kernel

In practice, there are not many commercialized operating systems that use

pure-microkernel architecture. Instead, to balance performance, reliability,
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and security, system designers mostly choose a hybrid kernel architecture.

A hybrid kernel is, as its name indicates, a hybrid between a monolithic

kernel and a microkernel. Unlike a microkernel where everything takes place

in user-level servers and drivers, or a monolithic kernel where all are included

in the kernel space, the designers of a hybrid kernel may decide to keep several

components inside kernel and some outside.

In fact, most of the commercialized operating systems we use today are

hybrid architectures, including Windows NT series (NT, XP, Vista, 7, Server

2003, Server 2008), and MacOS (also iOS).

2.3.4 Exokernel

Exokernel is not really a whole different architecture not included in above

discussions, but rather an orthogonal design principle.

Exokernels [34,56] attempt to separate security and performance from ab-

straction. The kernel almost does nothing but securely multiplex the hard-

ware. The goal is to avoid forcing any particular abstraction upon appli-

cations, instead allowing them to use or implement whatever abstractions

that are best suited to their task without having to layer them on top of

other abstractions which may impose limits or unnecessary overhead. In the

original Exokernel design, this is done by moving abstractions into untrusted

user-space libraries called “library operating systems” (libOSes), which are

linked to applications and call the operating system on their behalf.

Both Exokernels and L4 [50] could be regarded as the efforts of rethinking

low-layer software abstractions. In both projects, they advocate exposing

abstractions that are close to the underlying hardware to enable applications

to customize for improved performance. In IBOS we build on these previ-

ous works – in fact we use the L4Ka::Pistachio L4 [9] MMU abstractions

and message passing implementation directly. However, the key difference

between our work and L4 and Exokernel is that we expose high-level appli-

cation abstractions at our lowest layer of software, not low-level hardware

abstractions. Our focus is on making web browsers more secure and the

system software we use to accomplish this improved security. At the same

time, we manage to build a Unix-like layer to provide support for traditional

applications.
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2.3.5 Operating system security

Many efforts have been put into operating system security research. Previous

studies in device driver security, and secure window managers, while not

directly applicable to the systems we build, could still be learned.

Device driver security Device driver security has focused on three main

topics. First, several projects focus on restricting driver access to I/O ports

and device access to main memory via DMA. For example, RVM uses a

software-only approach to restrict DMA access of devices [107], SVA prevents

the OS from accessing driver registers via memory mapped I/O through

memory safety checks [29], and Mungi [61] relies on using a hardware IOMMU

to limit which memory regions are accessible from devices. Second, system

designers isolate drivers from the rest of the system. This isolation can

be achieved by running drivers in user-mode, which has been a staple of

Microkernel systems [40,51,62], using software to protect the OS from kernel

drivers [35,114], or by using page table protections within the OS [92,93]. The

driver security architecture in IBOS differs from these approaches because

our system provides fine-grained protection for individual requests within a

shared driver in addition to isolating the driver from the rest of the system.

Secure window managers A number of recent projects have looked at

reducing the TCB for window managers. For example DoPE [36] and Nit-

picker [37] move widget rendering from the server to the client, leaving the

server to only manage shared buffers. CMW [108], EWS [89], and Trust-

Graph [74] also use clients for rendering, but are able to apply capabilities

and mandatory access control policies to application user-interface elements.

In IBOS, we deprecate the general window notion of modern computer sys-

tems in favor of the simpler browser chrome and tab motif, allowing us to

track our security policies down to the underlying graphics hardware on our

system.

2.4 Browser architectures

In the early stage of the history of the Web, Netscape was the most popular

web browser – yet a traditional desktop application. With the success of
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Netscape showing the importance of the Web, Microsoft created Internet

Explorer to compete and eventually take over the market of web browsing.

At the beginning of this century, due to lack of competition, Internet Ex-

plorer stagnated in version 6 for 5 years until 2006, resulting in slow innova-

tion in browser technology at the time. As web pages gradually transform

into web apps, there are greater demands of building new and more secure

browsing systems.

2.4.1 Monolithic browser architecture

New breed of web browsers were introduced, including Firefox, Opera, and

newer versions of Internet Explorer, to facilitate web browsing. However,

these browsers still use a monolithic architecture, where all browser services

such as user interface(UI), cookie management, and network services, to-

gether with plugins, browser addons (e.g., Firefox extensions), and web apps

from different sources are running in the same address space with the same

privileges. The single-application mode provides little isolation or security

between these distinct applications hosted within the same browser, or be-

tween different applications aggregated on the same web page. A compromise

occurring on any part of the browser, including plugins, results in a total com-

promise of all web apps running within the browser and the browser itself.

2.4.2 Secure browser architecture

A number of recent academic and industry projects have proposed new

browser architectures resembling operating systems including SubOS [52,53],

safe web programs [79], OP [46], Chrome [18, 80], Gazelle [104], and Ser-

viceOS [69]. Without exception, these secure web browsers choose to use

microkernel-like architectures to enforce strong isolation and explicit com-

munication between different components. Although the browser portion of

IBOS and OP2 do resemble some of these works, they all run on top of com-

modity OSes and include complex libraries and window managers in their

TCB, something that IBOS avoids by focusing on the OS architecture of our

system.

All these systems require the use of host OS sandboxing to restrict
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browsers. The idea of sandboxing browsers was first introduced by Gold-

berg et al. [39]. We also use this type of sandboxing in our OP2 browser

as the starting point for our security, and we focus on more fine-grained

interactions within the browser itself. Plus, by breaking our browser into

different components, we can apply different sandboxing rules to each sub-

system, giving us even more control over our browser’s interactions with the

underlying system. Moreover, the browser abstractions that IBOS exposes

for its browser components avoid the complex sandboxing process, and sim-

plify the browsing system.

As the representative commercial secure browser, Google Chrome uses op-

erating system processes to separate instances of page rendering in different

ways. Chrome provides four different process creation models that can pro-

vide isolation between different browser entities [18]. Unlike OP2, Chrome

does not support protections between frames in a web browser and does not

enforce security policy for plugin content. Chrome also relies on the parsing

and rendering engine to correctly control network requests, placing security

decisions in the same process as the rendering engine. We separate the secu-

rity enforcement from rendering and allow security decisions to be made by

the browser kernel, allowing plugins to be subject to the policies enforced by

the browser kernel.

2.4.3 Browser-oriented OSes

Researchers and engineers have also tried to build specialized systems that

are used primarily for web browsing.

In the Tahoma browser [28], the authors propose using virtual machine

monitors (VMMs) to enable web apps to specify code that runs on the client.

Tahoma uses server-side manifests to specify the security policy for the down-

loaded code and the VMM enforces this security policy. Tahoma does expose

a few browser abstractions from their VMM to help manage UI elements and

network connections, but operates mostly on hardware-level abstractions.

Because Tahoma operates on hardware-level abstractions, Tahoma is unable

to provide full backwards-compatible web semantics from the VMM and more

fine-grained protection for browsers, such as isolating iframes embedded in

a web application. Also, many modern VMMs use a full-blown commodity

18



OS in a privileged virtual machine or host OS for driver support, leaving tens

of millions of lines of code in the TCB potentially.

The webOS from Palm [75] and the upcoming ChromeOS from Google [43]

run a web browser on top of a Linux kernel. ChromeOS includes kernel hard-

ening using trusted boot, mandatory access controls, and sandboxing mech-

anisms for reducing the attack surface of their system. However, ChromeOS

and IBOS have fundamentally different design philosophies. ChromeOS

starts with a large and complex system and tries to remove and restrict

the unused and unneeded portions of the system. In contrast, IBOS starts

with a clean slate and only adds to our system functionality needed for our

browser. Although our approach does require implementing from scratch

low-level software and fitting device drivers to a new driver model, the end

result has 2 to 3 orders of magnitude fewer lines of code in the TCB, while

still retaining nearly all of the same functionality.

2.5 General web security

In addition to the effort of designing more secure browser architectures we

discussed, there are many more approaches for improving the general web

security.

One way to mitigate the problem is to educate the user. Some examples are

using the latest patched software, installing protection programs, staying off

illegitimate websites, and being aware of suspicious content. However, edu-

cating users is hard. Under certain circumstances, such as encountering with

technical or financial difficulty, it is infeasible for a user to upgrade the soft-

ware or purchase protection programs. More alarmingly, even if the user only

visits legitimate websites and keeps awareness, he or she could be subjected

to stealth web-based attack. It has been reported that legitimate websites

could serve malicious advertisements, resulting in malware downloaded and

executed in background [77].

The other is to fix the software stack for web browsing. Mitigation tech-

niques can involve the server, the server and the client, or just the client

to provide protection to users. The first, and often most accepted, solution

to web app vulnerabilities is simple: fix the bug or write better programs

in the server. However, recent research has argued that purely server-side

19



techniques are flawed due to differences in browser implementations [70], ul-

timately limiting the effectiveness. Hybrid server-client solutions use browser

modifications to allow web developers to express security constraints to the

browser directly. Some recent examples of this type of defensive architecture

include introducing new HTML tags for fine-grain sandboxing of scripts [103].

Two downsides of hybrid solutions are that servers and clients must both be

modified, introducing a high barrier to adoption, and hybrid solutions pro-

vide little support for legacy systems. Client-side prevention is positioned so

that clients can defend themselves against servers even if the servers are ma-

licious or unpatched. Fundamentally, code executes within browsers, making

the browser a natural location to detect and remove malicious code, or con-

tain the damage. But having browsers changed alone might raise potential

compatibility issue with unchanged web apps. This constricts the develop-

ment of client-side mitigation techniques and has caused some designers to

deploy conservative designs for maintaining compatibility to “avoid breaking

the Web” [81].

Both server-side and client-side improvement are necessary and they are

complementary to each other and would also benefit the systems we build.

In the following paragraphs, we discuss a series of recent work in details, in-

cluding XSS defenses, clickjacking defenses, cookie protection, taint tracking,

and formal methods for web security.

XSS defenses XSS defenses are closely related to our HttpOnly cookie

defense in Zan because one common use of XSS is to steal authentication

cookies via injected JavaScript, which is something our defense is designed

to prevent. XSS Auditor [41] and IE8 [81] use heuristics to detect script-like

entities embedded in URLs to prevent reflected XSS attacks. A number of

recent projects enable the programmer to use annotations to specify portions

of the HTML document where the browser prevents scripts from running [42,

55,98,102,103]. Similarly, two recent project propose automated client/server

hybrid systems [48,70] that automatically mark portions of the HTML where

scripts are not allowed to run. Finally, the Firefox NoScript extension [64]

white-lists trusted script source locations. The mechanism we propose in Zan

differs from these approaches because it focuses on identifying and isolating

authentication cookies rather than determining what JavaScript code should

be allowed to run.
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Clickjacking defenses Frame-based attacks were first reported in 2008

when Hansen and Grossman introduced the term “clickjacking” [49]. In

a clickjacking attack, the attacker chooses a clickable region on the target

website that the user is currently authenticated on (e.g., a “like” button in

a Facebook page). To perform the attack, a malicious website will load a

page from the victim website inside an IFRAME, using Cascading Style Sheets

(CSS) to make it transparent. At the same time, this transparent clickable

element is placed on top of some visible, fake, but interesting clickable gadget

(e.g., click to win a free iPad). As a result, the user would “like” an attacker

chosen page in Facebook instead of unrealistically winning a free iPad when

he or she clicks it. Clickjacking defenses are related to our X-Frame-Options

defense in Zan because clickjacking is enabled by attackers including framed

pages and occluding the framed content to fool users.

ClearClick, which is part of NoScript [64], tries to prevent clickjacking

by notifying the user anytime they interact with an framed element that

has been occluded. This mechanism essentially infers the user’s intent by

reasoning about visual elements and any occlusion that the page might induce

on embedded elements. ClickIDS [14] uses ClearClick as part of an automated

testing tool that synthesizes clicks on pages and runs them with ClearClick

and without ClearClick enabled. By comparing the results of the two pages

they can infer a possible clickjacking attack by detecting differences between

the two. Our complementary X-Frame-Options defense differs from these

techniques by instead inferring programmer intentions (i.e., frame busting

code) and preventing the page from being framed rather than inferring user

intentions.

Cookie protection One recent project that aims to protect cookies is the

Doppelganger project [86]. Doppelganger provides more flexible cookie poli-

cies for users by recording and replaying web sessions to detect if modifying

a cookie would affect a web site. This information enables Doppelganger to

make decisions about deleting cookies that would otherwise be stored by the

browser.

Recent work by Vogt et al. [100], proposes using dynamic taint tracking

to prevent cookies from being sent to a remote site via JavaScript. In our

work we strive to identify and isolate login cookies, whereas they assume

that cookies are tainted and track the effects of these cookies as JavaScript
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code accesses them. One could imagine combining these two complementary

techniques so that their taint tracking system only taints cookies that Zan

identifies as HttpOnly cookies.

Taint tracking for web app security Taint tracking or data flow track-

ing has been used extensively to improve application security. Existing tech-

niques such as Perl supports a taint-mode [76] to prevent unsafe use of un-

trusted input. Sekar [85] provides an effective and language-independent

taint tracking approach to prevent injection attacks. Vogt et al. use client-

side taint tracking to identify requests that leak sensitive information across

domain boundaries [100]. Their technique works inside of the browser and

provides security alerts when sensitive information is sent to a third-party do-

main. Resin [111] is another tool that tracks data flow to propagate policies

to improve application security. However, Resin only requires that untrusted

data be sanitized to prevent XSS vulnerabilities and assumes the correctness

of the sanitization.

Secure browser extensibility Most internet users do not expect the per-

formance of web apps to be the same as desktop applications, which are

driven by code created from high-quality compilers and designed to run na-

tively. Browser extensibility mechanisms, such as plugins, provide a way to

use native code modules as part of a web app, but also result in new avenues

of vulnerabilities.

One software project that strives for security yet still offers native perfor-

mance is Xax [30]. Xax separates native instruction execution from native

OS access, leveraging legacy code to deliver desktop applications on the Web.

In contrast to Xax, which relies on the memory management unit for memory

isolation and a kernel system-call patch to prevent OS access, Google’s Na-

tive Client takes a different approach [110]. Using an OS-portable sandbox,

Native Client relies on x86 segmentation hardware to enforce memory isola-

tion and on a binary validator to isolate the OS interface, preventing direct

access to the OS and resources such as the file system and the network.

Xax and Native Client are but two of the software technologies designed

to close the performance gap by using legacy software and strengthen the

security of web browsers. While our focus in this dissertation is the secure

architectures of browsing systems, these techniques can be supplement to our
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design when safe extensibility is desired.

Formal methods for web security Researchers have been using model

checking and symbolic execution to find subtle bugs in operating systems

such as Coreutils [23], file systems [109], network stack implementations [22].

In seL4 [57], the authors use formal verification to guarantee that a imple-

mentation of L4 microkernel is free of programming errors.

Formal methods have also been applied to web browsers. In a recent work

by Chen et al. [24], the authors examined cases that allow the address bar

in the browser to mismatch the page content for Internet Explorer. They

use model checking to search for violations of invariants specified for GUI

elements in Internet Explorer under normal operation. Bohannon et al. pro-

posed a formal specification of the core functionality of a web browser [20].

However, they did not really verify any security property or provide security

enforcement in the work.

2.6 Summary

Current research efforts to retrofit today’s web browsers help to improve

security, but fail to address the fundamental design flaws of current browsing

systems. Mechanisms that run within current web browsers to provide better

web app security are only as secure as the browser they run within, which

currently is not very secure. Moreover, web browsers still run on top of

commodity operating systems and use general abstractions designed for a

wide range of traditional applications, forcing browsers to rely on a huge

TCB. Without redesign of the whole browsing system, it is infeasible to

achieve the desired security.
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CHAPTER 3

THE ILLINOIS BROWSER OPERATING
SYSTEM

Web browsing becomes the primary task in today’s computing systems. How-

ever, modern web browsers still run on top of commodity operating systems,

use general-purpose OS abstractions, and inherite the cruft needed to imple-

ment and access these general OS abstractions. In this chapter, we exam-

ine the possibility of building a operating system specifically for secure web

browsing and present the design and implemention of our prototype system.

3.1 Introduction

Current research efforts into more secure web browsers help improve the se-

curity of browsers, but remain susceptible to attacks on lower layers of the

computer stack. The OP web browser [46], Gazelle [104], Chrome [18], and

ChromeOS [43] propose new browser architectures for separating the func-

tionality of the browser from security mechanisms and policies. However,

these more secure web browsers are all built on top of commodity operat-

ing systems and include complex user-mode libraries and shared system ser-

vices within their trusted computing base (TCB). Even kernel designs with

strong isolation between OS components (e.g., microkernels [40, 50, 51] and

information-flow kernels [32, 59, 112]) still have OS services that are shared

by all applications, which attackers can compromise and still cause damage.

Here are a few ways that an attacker can still cause damage to more secure

web browsers built on top of traditional OSes:

• A compromised Ethernet driver can send sensitive HTTP data (e.g.,

passwords or login cookies) to any remote host or change the HTTP

response data before routing it to the network stack.

• A compromised storage module can modify or steal any browser related
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persistent data.

• A compromised network stack can tamper with any network connection

or send sensitive HTTP data to an attacker.

• A compromised window manager can draw any content on top of a web

page to deploy visual attacks, such as phishing.

In this chapter we describe IBOS, an operating system and a browser co-

designed to reduce drastically the TCB for web browsers and to simplify

browser-based systems. Our key insight is that our lowest-layer software can

expose browser-level abstractions, rather than general-purpose OS abstrac-

tions, to provide vastly improved security properties for the browser without

affecting the TCB for traditional applications. Some examples of browser

abstractions are cookies for persistent storage, hypertext transfer protocol

(HTTP) connections for network I/O, and tabs for displaying web pages. To

support traditional applications, we build UNIX-like abstractions on top of

our browser abstractions.

IBOS improves on past approaches by removing typically shared OS com-

ponents and system services from our browser’s TCB, including device

drivers, network protocol implementations, the storage stack, and window

management software. All of these components run above a trusted refer-

ence monitor [11], which enforces our security policies. These components

operate on browser-level abstractions, allowing us to map browser security

policies down to the lowest-level hardware directly and to remove drivers and

system services from our TCB.

This architecture is a stark contrast to current systems where all appli-

cations layer application-specific abstractions on top of general-purpose OS

abstractions, inheriting the cruft needed to implement and access these gen-

eral OS abstractions. By exposing application-specific abstractions at the OS

layer, we can cut through complex software layers for one particular appli-

cation without affecting traditional applications adversely, which still run on

top of general OS abstractions and still inherit cruft. We choose to illustrate

this principle using a web browser because browsers are used widely and have

been prone to security failures recently. Our goal is to build a system where

a user can visit a trusted web site safely, even one or more of the components

on the system have been compromised.
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Our contributions are:

• IBOS is the first system to improve browser and OS security by making

browser-level abstractions first-class OS abstractions, providing a clean

separation between browser functionality and browser security.

• We show that having low-layer software expose browser abstractions

enables us to remove almost all traditional OS components from our

TCB, including device drivers and shared OS services, allowing IBOS

to withstand a wide range of attacks.

• We demonstrate that IBOS can still support traditional applications

that interact with the browser and shared OS services without com-

promising the security of our system.

3.2 The IBOS architecture

This dissertation presents the design and implementation of the IBOS op-

erating system and browser that reduce the TCB for browsing drastically.

Our primary goals are to enforce today’s browser security policies with a

small TCB, without restricting functionality, and without slowing down per-

formance. To withstand attacks, IBOS must ensure any compromised com-

ponent (1) cannot tamper with data it should not have access to, (2) cannot

leak sensitive information to third parties, and (3) cannot access components

operating on behalf of different web sites.

In this section we discuss the design principles that guide our design and

the overall system architecture. In Section 3.3 we discuss the security policies

and mechanisms we use.

3.2.1 Design principles

We embrace microkernel [50], Exokernel [34], and safety kernel design prin-

ciples in our overall architecture. By combining these principles with our

insight about exposing browser abstractions at the lowest software layer we

hope to converge on a more trustworthy browser design. Five key principles

guide our design:

26



1. Make security decisions at the lowest layer of software. By pushing our

security decisions to the lowest layers we hope to avoid including the

millions of lines of library and OS code in our TCB.

2. Use controlled sharing between web apps and traditional apps. Sharing

data between web apps and traditional apps is a fundamental function-

ality of today’s practical systems and should be supported. However,

this sharing should be facilitated through a narrow interface to prevent

misuse.

3. Maintain compatibility with current browser security policies. Our pri-

mary goal is to improve the enforcement of current browser policies

without changing current web-based applications.

4. Expose enough browser states and events to enable new browser security

policies. In addition to enforcing current browser policies, we would like

our architecture to adapt easily to future browser policies.

5. Avoid rule-based OS sandboxing for browser components. Fundamen-

tally, rule-based OS sandboxing is about restricting unused or overly

permissive interfaces exposed by today’s operating systems. However,

sandboxing systems can be complex (the Ubuntu 10.04 SELinux refer-

ence policy uses over 104K lines of policy code) and difficult to imple-

ment correctly [38, 97]. If our architecture requires OS sandboxing for

browser components then we should rethink the architecture.

3.2.2 Overall architecture

Figure 3.1 shows the overall IBOS architecture. The IBOS architecture uses a

basic microkernel approach with a thin kernel for managing hardware and fa-

cilitating message passing between processes. The system includes user-mode

device drivers for interacting directly with hardware devices, such as network

interface cards (NIC), and browser API managers for accessing the drivers

and implementing browser abstractions. The key browser abstractions that

the browser API managers implement are HTTP requests, cookies and local

storage for storing persistent data, and tabs for displaying user-interface (UI)
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Figure 3.1: Overall IBOS architecture. Our system contains user-mode
drivers, browsers API managers, web page instances, and traditional pro-
cesses. To manage the interactions between these components, we use a
reference monitor that runs within our IBOS kernel. Shaded regions make
up the TCB.

content. Web apps use these abstractions directly to implement browser func-

tionality, and traditional applications (traditional apps) use a UNIX layer to

access UNIX-like abstractions on top of these browser abstractions.

The IBOS kernel Our IBOS kernel is the software TCB for the browser

and includes resource management functionality and a reference monitor for

security enforcement. The IBOS kernel also handles many traditional OS

tasks such as managing global resources, creating new processes, and manag-

ing memory for applications. To facilitate message passing, the IBOS kernel

includes the L4Ka::Pistachio [9] message passing implementation and MMU

management functions. All messages pass through our reference monitor

and are subjected to our overall system security policy. Section 3.3 describes

the policies that the IBOS kernel enforces and the mechanisms it uses to

implement these policies.
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Network, storage, and UI managers The IBOS network subsystem

handles HTTP requests and socket calls for applications. To handle HTTP

requests, network processes check a local cache to see if the request can be

serviced via the cache, fetch any cookies needed for the request, format the

HTTP data into a TCP stream, and transform that TCP stream into a series

of Ethernet frames that are sent to the NIC driver. Socket network processes

export a basic socket API and simply transform TCP streams to Ethernet

frames for transmission across the network. Only traditional apps can access

our socket network processes. The IBOS kernel manages global states, like

port allocation.

The IBOS storage manager maintains persistent storage for key-value data

pairs. The browser uses the storage manager to store HTTP cookies and

HTML5 local storage objects, and the basic object store includes optional

parameters, such as Path and Max-Age, to expose cookie properties to the

reference monitor. The storage manager uses several different namespaces

to isolate objects from each other. Web apps and network processes share a

namespace based on the origin (the <protocol, domain name, port> tuple

of a uniform resource locator) that they originate from, and web apps and

traditional apps share a “localhost” namespace, which is separate from the

HTTP namespace. All other drivers and managers have their own private

namespaces to access persistent data.

The IBOS UI manager plays the role of the window manager for the sys-

tem. However, rather than implement the browser UI components on top

of the traditional window motif, we opted for a tabbed browser motif. Ba-

sic browser UI widgets, called the browser chrome, are displayed at the top

of the screen. IBOS displays web pages in tabs and the user can have any

number of tabs open for web apps. There is a tab for basic browser config-

uration and administration, and a tab that is shared by traditional apps. If

traditional apps wish to implement the window motif, they can do so within

the tab. The main advantage of our browser-based motif is that it enables

IBOS to bypass the extra layers of indirection traditional window managers

put between applications and the underlying graphics hardware, exposing

browser UI elements and events directly to the IBOS kernel. We discuss the

security implications of our design decision in more detail in Section 3.3.8.
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Web apps, traditional apps, and plugins The IBOS system supports

two different types of processes: web page instances and traditional processes.

A web page instance is a process that is created for each individual web

page a user visits. Each time the user clicks on a link or types a uniform

resource locator (URL) into the address bar, the IBOS kernel creates a new

web page instance. Web page instances are responsible for issuing HTTP

requests, parsing HTML, executing JavaScript, and rendering web content

to a tab. Traditional processes can execute arbitrary instructions, and the

key difference between a web page instance and a traditional processes is that

the IBOS kernel gives them different security labels, which the kernel uses for

access control decisions. Web page instances are labeled with the origin of the

HTTP request used to initiate the new web page, and traditional processes

are labeled as being from “localhost.” These two processes interact via the

storage subsystem since both types of processes can access “localhost” data.

In general, plugins are external applications that browsers use to render

non-HTML content. One common example of a plugin is the Flash player

that enables browsers to play Flash content. In IBOS, plugins run as tra-

ditional processes, except that they are launched by the browser and the

system gives them access to browser states and events through a standard

plugin programming interface, called the NPAPI [2].

3.3 IBOS security policies and mechanisms

Our primary goal is to enforce browser security policies from within our IBOS

kernel. This section describes the mechanisms that the IBOS kernel uses

to enforce the SOP. We also discuss policies and mechanisms for enforcing

UI interactions, and we describe a custom policy engine that lets web sites

further restrict current policies.

3.3.1 Threat model of IBOS

Our primary goal is to ensure that the IBOS kernel upholds our security

policies even if one or more of the subsystems have been compromised. In

our threat model, we assume that an attacker controls a web site and can

serve arbitrary data to our browser, or that the system contains a malicious
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traditional app. We also assume that this malicious data or traditional app

can compromise one or more of the components in our system. These sus-

ceptible components include all drivers, browser API managers, web page

instances, and traditional processes. Once the attacker takes control of these

components, we assume that he or she can execute arbitrary instructions as

a result of the attack. We focus on maintaining the integrity and confiden-

tiality of the data in our browser. In other words, we would like the user to

be able to open a web page on a trusted web server, and interact with this

web page securely, even if everything on the client system outside of our TCB

has been compromised. Availability is an important, but separate, aspect of

browser security that we do not address in this dissertation.

In our system we trust the layers upon which we built IBOS. These lay-

ers include the IBOS kernel and the underlying hardware. Like all other

browsers, IBOS predicates security decisions based on domain names, so we

trust domain name servers to map domain names to IP addresses correctly.

Compromising any of these trusted layers compromises the security of IBOS.

3.3.2 IBOS work flow

This section describes a web page instance making a network request to help

illustrate the security mechanisms that IBOS uses.

Figure 3.2 shows the flow of how a web page instance fetches data from

the network. The user visits a page hosted at uiuc.edu and this web page

includes an image from foo.com. To download the image, (1) the web page

instance will make an HTTP request that the IBOS kernel forwards to an

appropriate network process. The network process forms a HTTP request,

which includes setting up HTTP headers, (2) fetching cookies from the stor-

age subsystem, (3) requesting a free local TCP port to transform this request

into TCP/IP packets and Ethernet frames, and (4) sending it to network

manager. The network manager notifies the Ethernet driver which (5) pro-

grams the NIC to transmits the packet out to the network. When the NIC

receives a reply for the request, (6) it notifies the Ethernet driver. The

driver subsequently (7) notifies the network manager, which (8) forwards the

packet to the appropriate network process. The network process then parses

the data and (9) passes the resulting HTTP reply and data to the original
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Figure 3.2: IBOS work flow. This figure enlarges the right half of Figure 3.1
and shows how our IBOS subsystems interact when a web page instance
from uiuc.edu issues a network request to foo.com. Subsystems are shown
in boxes and solid and dotted arrows represent IBOS messages for outgoing
and incoming data respectively. The reference monitor (which is not shown
here) checks all these messages to enforce security properties.

web page instance.

3.3.3 IBOS labels

To enforce access control decisions, the IBOS kernel labels web page in-

stances, traditional processes, and network processes. IBOS labels specify

the resources that a process can access or messages it can receive. Each web

page instance has one label, which is the origin of the main HTML document.

Each traditional process is labeled as being from “localhost” when they are

created. Each network process has an origin label for the network resources

it handles and has an origin label for the web page instances that are allowed

to access it. IBOS labels the processes upon creation, and keeps the labels

unchanged throughout the processes’ life-cycle.

An important point is that the IBOS kernel infers the origin labels for web

page instances and network processes automatically by extracting related

information from the messages passed among them. By inferring labels rather

than relying on processes to label themselves, the IBOS kernel ensures that
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it has the correct label information, even if a process is compromised.

The newUrl and fetchUrl IBOS system calls are the two requests that cause

the kernel to label processes. The newUrl system call is used by web page

instances and the UI manager use to navigate the browser to a new URL. The

newUrl system call consists of two arguments: a URL and a byte array for

HTTP POST data. When the IBOS kernel receives a newUrl request it will

create a new web page instance and set the label for this web page instance

by parsing the origin out of the URL argument of the newUrl request. When

servicing newUrl requests, the IBOS kernel will reuse old web page instances

(to reduce process startup times), but only when the origin labels match for

the old web page instance and the URL argument.

Web page instances use the fetchUrl system call to issue HTTP and

HTTPS requests to fetch network objects, such as images. The fetchUrl sys-

tem call has two arguments: a URL and HTTP header information. When

a web page instance issues a fetchUrl system call, the IBOS kernel uses the

origin of the web page instance (set by the original newUrl call) and the

origin of the fetchUrl URL argument to find a network process with these

same labels, or creates a new network processes and labels it accordingly if

an existing network process cannot be found.

More details about how we use these labels for access control decisions are

described in the remainder of this section.

3.3.4 Security invariants

For all of our subsystems, we use security invariants that are assertions

on all interactions between subsystems that check basic security properties.

The key to our security invariants is that we can extract security relevant

information from messages automatically, and provide high assurance that

the system maintains the security policy without having to understand how

each individual subsystem is implemented. Using these security invariants,

we remove from the TCB almost all of the components found in modern

commodity operating systems, including device drivers.

The ideal security invariant is complete, implementation agnostic, executes

quickly, and requires only a small amount of code in the IBOS kernel. A com-

plete invariant can infer all of the states needed to ensure the high-level secu-
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rity policy, and an implementation agnostic invariant can infer states without

relying on the specific implementation of individual subsystems. The IBOS

kernel evaluates invariants in the kernel and inline with messages, so security

invariants should execute quickly and require little code to implement. In our

design we strive to make the appropriate trade offs among these properties

to improve security without making the system slow or increasing our TCB

significantly. The base security invariant we have is:

SI 0: All components can only perform their designated functions.

For example, the UI subsystem can never ask for cookie data or the storage

manager cannot impersonate a network process to send synthesized attack

HTTP data to a web page instance.

3.3.5 Driver invariants

The two driver invariants the IBOS kernel enforces are:

SI 1: Drivers cannot access DMA buffers directly.

SI 2: Devices can only access validated DMA buffers.

In our approach, we use a split driver architecture where we separate the

management of device control registers from the use of device buffers (SI

1). For example, our Ethernet driver never has access to transmit or receive

buffers directly. Instead, it knows the physical addresses where the IBOS ker-

nel stores these buffers, and it programs the NIC to use them. By separating

these two functions we can interpose on the communications between them

to ensure that IBOS upholds browser security policies, even if an attacker

completely compromises a shared driver.

Using this split architecture, processes fill in device-specific buffers for

DMA transfers, and the IBOS kernel infers when drivers initiate DMA trans-

fers to ensure that the driver instructs the device to use a verified DMA

buffer (SI 2). Fortunately, DMA buffers tend to use well-defined interfaces,

like Ethernet frames for Ethernet drivers, so the IBOS kernel can readily

glean security relevant information from these DMA buffers before the de-

vice accesses them. Unfortunately, the interface between drivers and devices

34



is device-specific, so the IBOS kernel must have a small state machine for

each device to properly infer DMA transfers. However, we found this state

machine to be quite small for the devices that we use in IBOS.

In IBOS we implement a driver for the e1000 NIC, a VESA BIOS Exten-

sions driver for our video card, and drivers for the mouse and keyboard.

3.3.6 Storage invariants

The primary invariant we strive to enforce in the storage manager is:

SI 3: All of our key-value pairs maintain confidentiality and integrity even

if the storage stack itself becomes compromised.

To enforce this invariant, our IBOS kernel encrypts all objects before pass-

ing them to the storage subsystem. To encrypt data, the IBOS kernel main-

tains separate encryption keys for all of the namespaces on the IBOS system.

These namespaces include separate namespaces for HTTP cookies based on

the domain of the cookie, separate namespaces for web page instances based

on the origin of the page, separate namespaces for each of our subsystems,

and a separate namespace for all traditional apps. When the IBOS kernel

passes a request to the storage manager it will append the security labels, a

copy of the key from the key-value pair, and a hash of the contents to the

payload before encrypting the data and passing it to the storage subsystem.

When the IBOS kernel retrieves this data, it can decrypt the data and check

the labels and integrity of the information. By using encryption, the IBOS

kernel does not need to implement security invariants for any of our storage

drivers, and our storage subsystem is free to make data persistent using any

mechanisms it sees fit, such as the network (like in our implementation) or

via a disk-based storage system.

Our current implementation does not make any efforts to avoid an attacker

that deletes objects or replays old storage data. For web applications this

limitation has only a small effect because the cookie standards do not require

browsers to keep cookies persistently and because web applications often

limit the lifetime of cookies using expiration dates, which are also part of

the cookie standard. However, if this limitation did become problematic, we

could apply the principles learned from distributed or secure file systems to

provide stronger guarantees.
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3.3.7 Network process invariants

Our IBOS kernel maintains five main invariants for network processes:

SI 4: The kernel must route network requests from web page instances to the

proper network process.

SI 5: The kernel must route Ethernet frames from the NIC to the proper

network processes.

SI 6: Ethernet frames from network processes to the NIC must have an IP

address and TCP port that matches the origin of the network process.

SI 7: HTTP data from network processes to web page instances must adhere

to the SOP.

SI 8: Network processes for different web page instances must remain iso-

lated.

To help enforce these invariants, IBOS puts all network processes in their

own protection domains. If a web page instance makes a HTTP request,

the kernel will extract the origin from the request message and either route

this request to an existing network process that has the same label, or it will

create a new network process and label the network process with the origin of

the HTTP request. Likewise, the kernel inspects incoming Ethernet frames

to extract the origin and TCP port information, and routes these frames

to the appropriately labeled network process. By putting network processes

in their own protection domains, the kernel naturally ensures that network

requests from web page instances and Ethernet frames from the NIC are

routed to the correct network process (SI 4) (SI 5).

To ensure that the NIC sends outgoing Ethernet frames to the correct

host, the IBOS kernel checks all outgoing Ethernet frames before sending

them to the NIC to check the IP address and TCP port against the label

of the sending network process (SI 6). Also, the IBOS kernel checks cookies

before passing them to the network process to ensure that all of the origin

labels adhere to cookie standards. By performing these checks, the IBOS

kernel ensures that the NIC sends outgoing network requests to the proper

host and that the request can only include data that would be available to

the server anyway.
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To enforce the SOP, the IBOS kernel inspects HTTP data before forward-

ing it to the appropriate web page instance and drops any HTML documents

from different origins (SI 7). To inspect data, the kernel uses the content

sniffing algorithm from Chrome [15] to identify HTML documents so the

kernel can check to make sure that the origin of HTML documents and the

origin of the web page instance match. This countermeasure prevents com-

promised web page instances from peering into the contents of a cross-origin

HTML document, thus preventing the compromised web page instance from

reading sensitive information included in the HTML document.

To help isolate web page instances from each other, we also label network

processes with the origin of the web page instance (SI 8). This second label is

used only for network access control decisions and does not affect the cookie

policy, which is predicated on the origin of the network request. To access

network processes, the origin of the web page instance must match the origin

of this second label. By using this second label, the IBOS kernel isolates

network requests from different web page instances to the same origin. As a

result of this isolation, a web page instance that is served a malicious network

resource (e.g., a malicious ad [77]) that compromises a network process re-

mains isolated from other web page instances. If an attacker can compromise

a network process, IBOS limits the damage to the web page instance that

included the malicious content.

3.3.8 UI invariants

The three UI invariants that the IBOS kernel enforces are:

SI 9: The browser chrome and web page content displays are isolated.

SI 10: Only the current tab can access the screen, mouse, and keyboard.

SI 11: The URL of the current tab is displayed to the user.

The key mechanisms that our UI subsystem uses to provide isolation are

to use a frame buffer video driver and page protections to isolate portions of

the screen (SI 9). Our video driver uses a section of memory, called a frame

buffer, for writing to the screen. Processes write pixel values to this frame

buffer and the graphics card displays these pixels. Although our mechanism
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Figure 3.3: IBOS display isolation. This figure shows how IBOS divides the
display into three main parts: a bar at the top for the kernel, a bar for
browser chrome, and the rest for displaying web page content. The IBOS
kernel enforces this isolation using page protections and without relying on
a window manager.

makes heavy use of the software rastering available in Qt Framework [5], our

experiences and anecdotal evidence from the Qt developers shows that soft-

ware rastering can perform roughly as fast as native X drivers running on

Linux [8]. The key advantage of our approach is that the IBOS kernel can

use standard page-protection mechanisms to isolate portions of the screen.

Although our current implementation does not support hardware accelera-

tion, we believe that our techniques will work because the IBOS kernel can

interpose on standardized acceleration hardware/software interfaces, such as

OpenGL and DirectX.

To provide screen isolation, we divide up the screen into three horizontal

portions (Figure 3.3). At the top, we reserve a small bar that only the IBOS

kernel can access. We use the next section of the screen for the UI subsystem

to draw the browser chrome. Finally, we provide the remainder of the screen

to the web page instance. To ensure that only one web page instance can

write to the screen at any given time, we only map the frame buffer memory

region into the currently active web page instance and we only route mouse

and keyboard events to this currently active web page instance (SI 10).
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To switch tabs, the UI subsystem notifies the IBOS kernel about which

tab is the current tab, and the IBOS kernel updates the frame buffer page

table entries appropriately. However, a malicious UI manager could switch

tabs arbitrarily and cause the address bar and the tab content to become out

of sync (e.g., shows a page from attacker.com, but claims the page comes

from uiuc.edu). One alternative we considered for this UI inconsistency was

interposing on mouse and keyboard clicks to infer which tab the user clicked

on, and also performing optical character recognition on the address bar to

determine the address that the UI manager is displaying. However, tracking

this level of detail would require far too much implementation specific infor-

mation and would require the IBOS kernel to track additional events like a

user switching the order of tabs.

Our approach for the IBOS kernel is to use the kernel display area to

display the URL for the currently visible web page instance (SI 11). The

kernel derives the URL from the label of the currently visible web page

instance, providing high assurance that the URL the kernel displays matches

the URL of the visible web page instance without tracking implementation

specific states and events in the UI manager. Although this security invariant

appears simple, it is something that modern web browsers have had trouble

getting right [24].

3.3.9 Web page instances and IFRAMEs

The IBOS kernel creates a new web page instance each time a user clicks

on a link or types a new URL in the address bar. To enforce the SOP on

IFRAMEs, we run cross-origin IFRAMEs in separate web page instances. This

separation allows us to fully track the SOP using kernel visible entities. To

facilitate communication between web page instances and the IFRAMEs that

they host, we marshal postMessage calls between the two.

Our current display isolation primitives are coarse grained and we rely on

the web page instance to manage cross-origin IFRAME displays even though

IFRAMEs run in separate protection domains. However, current display poli-

cies allow web page instances to draw over cross-origin IFRAMEs that they

host, so this design decision has no impact on current browser policies. One

potential shortcoming of this display management approach is that compro-
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mised web page instances can read the display data for embedded IFRAMEs.

Fortunately, many sites with sensitive information, like facebook.com and

gmail.com, use frame busting techniques [60] to prevent cross-origin sites

from embedding them, which the IBOS kernel can enforce.

3.3.10 Custom policies

Our main focus of this project is being able to enforce current browser poli-

cies from the lowest layer of software. However, we also want to create an

architecture that exposes enough browser states and events to enable novel

browser security policies. Attacks such as XSS operate within traditional

browser policies and can be difficult to prevent without relying on the HTML

or JavaScript engine implementations. Although our architecture cannot pre-

vent XSS, our goal is to prevent these types of attacks from causing damage.

One mechanism we implement in IBOS is to give a web server the ability to

create its own more restrictive security policy to prevent attacks from sending

sensitive information to third-party hosts. In our custom policy, we allow

web sites to specify a server-side policy file that IBOS retrieves to restrict

network accesses for a web page instance, similar to Tahoma manifests [28].

For example, assume that a bank website located at http://www.bank.com

creates a policy file at http://www.bank.com/.policy that specifies the

online bank system can only access resources from www.bank.com or data.

bank.com. IBOS retrieves the policy file and automatically applies a more

restrictive policy for the online bank web application. This restrictive policy

prevents an attacker from sending stolen information to a third-party host,

providing an additional layer of protection for the web application.

3.4 Implementation

The implementation of IBOS is divided into three parts: the IBOS kernel,

IBOS messaging passing interfaces, and IBOS subsystems. The IBOS kernel

is implemented on top of the L4Ka::Pistachio microkernel and runs on X86-64

uniprocessor and SMP platforms. We modified L4Ka to improve its support

for SMP systems. The IBOS kernel schedules processes based on a static

priority scheduling algorithm.
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The IBOS kernel provides three basic APIs (i.e., send(), recv(), and

poll()) to facilitate message passing. Applications use send() and recv()

for communication and call poll() to wait for new messages. The IBOS

kernel intercepts all messages and automatically extracts the semantics from

them, like creating a new web page instance or forwarding cookies to network

processes. Then the kernel inspects the semantics to make sure they conform

to all security invariants and policies that we described in previous sections.

The IBOS subsystems implements APIs for web browsers and traditional

applications. They are built on top of an IBOS-specific uClibc [7] C library,

lwIP [31] TCP/IP stack and the Qt Framework. The web browser also uses

an IBOS-specific WebKit to parse and render web pages.

To support traditional apps, we use our uClibc and Qt implementations to

provide access to browser abstractions using the UNIX-like abstractions of

the C runtime, and GUI support from Qt. We use a few Qt sample programs

for testing and we implement one plugin. Our plugin is a PDF viewer that

uses the Ghostscript PDF rendering engine with bindings for Qt.

3.5 Summary

In this chapter, we presented IBOS, an operating system and web browser co-

designed to reduce drastically the trusted computing base for web browsers

and to simplify browsing systems. To achieve this improvement, we built

IBOS with browser abstractions as first-class OS abstractions and removed

traditional shared system components and services from its TCB. With our

new architecture, we showed that IBOS enforced traditional and novel se-

curity policies, and we argued that the overall system security and usability

could withstand successful attacks on device drivers, browser components, or

traditional applications.
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CHAPTER 4

THE OP2 SECURE WEB BROWSER

In this chapter, we present a standalone secure browser architecture that

can be used on top of commodity operating systems. When a specialized

operating system like IBOS is not desired, we argue that the architecture we

propose in this chapter could give a user the maximum protection for web

browsing.

4.1 Introduction

Flaws in the design and architecture of today’s web browsers allow the trend

of web-based exploitation to continue. Modern web browser design continues

to support the original model of browser usage where users viewed several

different static pages and the browser itself was the application. However,

recent web browsers have become a platform for hosting web apps, where

each distinct page (or set of pages) represents a logically different applica-

tion, such as an email client, a calender program, an office application, a

video client, a news aggregate, etc. The single-application model provides

little isolation or security between distinct applications hosted within the

same browser, or between different applications aggregated on the same web

page. A compromise occurring on any part of the browser, including plugins,

results in a total compromise of all web-based applications running within

the browser.

In our previous work we decomposed a browser into smaller subsystems

to separate the security policy enforcement of a browser from the implemen-

tation of the browser with the OP web browser [46]. OP decomposes the

browser into five main subsystems: the web-page subsystem, a user-interface

(UI) subsystem, a network subsystem, a storage subsystem, and a browser

kernel. The subsystems all communicate using message passing, and all mes-
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sages pass through the browser kernel, allowing the browser kernel to enforce

many browser access control decisions. By applying these basic operating

system principles to the OP design, we provided stronger isolation between

web apps when compared to the state of the art at the time.

After the design and implementation of OP there has been significant

effort by both the industry and research communities to design secure web

browsers. After OP, two additional web browsers were designed to improve

the state of theart in browser security: Google Chrome and Gazelle [18,104].

OP, Chrome, and Gazelle share many common features and each browser was

designed from the ground up with security goals in mind. In this chapter, we

present the design of the second version of OP, called OP2, that combines

techniques from OP, Chrome, and Gazelle.

Our goals in the design of OP2 are:

• Security: By drawing on the contributions of all three browsers we hope

to achieve a more secure web browser.

• Performance: Architectural decisions can impact the speed of the web

browser, the browser architecture should have low overhead compared

to other, modern web browsers.

• Compatibility: Browser design should have a minimal impact on the

compatibility of the browser with today’s web pages.

• Few lines of code: OP2 should require as few lines of code as possible

to keep the design simple and easy to reason about. A small code base

also enables it to be used by the research community and simplifies

maintenance.

4.2 The OP2 architecture

OP2 shares a similar architecture of the original OP web browser as shown

in Figure 4.1. Our browser still consists of five main subsystems: the web

page instances, a network component, a storage component, a user-interface

(UI) component, and a browser kernel. Each of these subsystems run within

separate OS-level processes. And we use OS-level sandboxing techniques
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Figure 4.1: Overall architecture of the OP2 web browser. Our web browser
contains five main subsystems: browser kernel, storage subsystem, network
subsystem, user-interface subsystem, and web page instances; each of these
subsystems run within separate OS-level processes.
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to limit the interactions of each subsystem with the underlying operating

system. The browser kernel manages the communication between each sub-

system and between processes, and the browser kernel manages interactions

with the underlying operating system.

4.2.1 Threat model of OP2

Similar to OP, the OP2 web browser was designed to operate under malicious

influence. We consider attacks that originate from a web page, potentially

targeting any part of the browser. We assume the attacker can have com-

plete control over the content being served to the web browser. A browser

compromise could be any sort of attack provided in this manner, with an

attack that results in code execution being the most capable form of exploit.

The OP2 web browser does not address attacks that operate within mod-

ern browser security policy, such as XSS and CSRF. Our goal is to prevent

bugs in the web browser application from degrading the overall security of

the browser. For example, memory corruption bugs in the JavaScript inter-

preter and logic errors within a browser plugin are both types of browser

bugs that OP2 attempts to mitigate. Techniques that secure web applica-

tions and provide greater protection against XSS, CSRF, and other web app

attacks (e.g. in Chapter 5) are orthogonal to this work and can be used in

conjunction with the OP2 web browser.

We trust the layers upon which OP2 is built. Namely, we trust the under-

lying operating system and libraries to enforce isolation for our subsystems.

As with other current browsers, we trust DNS names for labeling our security

contexts. If an attacker compromises any of these entities, the security of

our browser is at risk.

4.2.2 Kernel architecture

OP has a minimalistic browser kernel design that facilitates message passing

between browser processes. The browser kernel is a microkernel by design

and has dedicated processes that provide access to system resources. In

addition to message passing, the browser kernel uses an access control policy

to restrict messages between browser processes and implements all of the

45



security policy for OP.

OP2 uses the original OP design for the browser kernel because the mi-

crokernel approach simplifies our implementation of the browser kernel while

still providing the necessary information for our access control policies. We

have found that the additional latency from message passing required in a

microkernel design adds very little overhead because of added parallelism,

as shown in Section 7.2.2. We do perform some simple optimizations in the

browser kernel to enhance the speed of OP2, which we discuss in Section 4.4.

4.2.3 Process models

To be consistent with the prior description of OP, we call all of the processes

responsible for executing content in a single page the web page instance,

Figure 4.1 shows the logical grouping of processes into a web page instance

in OP2.

The standard operation of OP uses a different web page instance for each

page. In OP, each web page instance consists of a JavaScript, HTML, VNC,

and multiple plugin processes.In OP2, however, we have chosen to combine

each of the components in a web page instance into a single process with

plugins remaining in a separate process. Navigation between pages causes

new web page instances, and each tab is backed by a separate web page

instance. New windows that are created by JavaScript are run in separate

web page instances as in the original OP design. This change in architecture

from OP to OP2 enables OP2 to reuse a substantial amount of WebKit [6]

with minimal modifications to support the OP2 architecture. From a security

perspective, the browser kernel still exposes the same set of system calls to

each web page instance and is able to enforce modern browser security policy.

We change little of the functions of other subsystems in OP2. Our UI sub-

system is designed to isolate content that comes from web page instances,

and provide common utilities for web browsing such as address bar, book-

marks, and navigation buttons. Any time the web browser needs to store or

retrieve a file, it is accomplished through the UI to make sure the user has

an opportunity to validate the action using traditional browser UI mecha-

nisms. This decision is justified, since users need the flexibility to access the

file system to download or upload files, but our design reduces the likelihood
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of a UI subsystem compromise. Providing user interaction for file operation

prevents drive-by download attacks as well as arbitrary uploading of files

from the user’s file system.

We still provide components for accessing the file system or the network

since the web page instance cannot access them directly. The storage compo-

nent stores persistent data, such as cookies, in an SQLite database. SQLite

stores all data in a single file and handles many small objects efficiently, mak-

ing it a good choice for our design, since it is nimble and easy to sandbox. A

separate network subsystem implements the HTTP protocol and downloads

content on behalf of other components in the system.

4.2.4 Displaying page content

OP uses VNC for rendering in one process and displaying the rendered con-

tent in another. This allowed OP to achieve isolation between the rendering

engine and the user interface, a desirable property to prevent parsing and

rendering bugs from interfering with the user’s interaction with the browser.

OP2 eliminates the VNC process for display to combine as many of the

processes in a web page instance as we can. In place of VNC based rendering,

OP2 uses native window reparenting supported by the window manager (i.e.

Xorg, X11, or Windows). Window reparenting is fast and requires no redi-

rection of rendered content between processes, so it is as fast as displaying

windows natively. It is also simple and directly supported by the Qt toolkit.

The primary disadvantage is that the web page instance requires direct in-

teraction with the window manager. Direct interaction with the window

manager limits OP2 to specific operating systems and exposes the window

manager to potentially compromised browser components.

4.2.5 Cross-origin IFRAME

Display security refers to the browser’s ability to isolate different-origin con-

tent inside of a single page. In OP – the browser is able to isolate plugins in a

separate process and quarantine vulnerabilities and bugs in plugins. Gazelle

introduced frame isolation that provides isolation for cross-origin frames in

web pages [104]. Gazelle’s mechanism works by creating a new web page
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instance for the frame if it belongs to a different origin than that of the

including page.

In OP2 we adopted the Gazelle design and isolate cross-origin frames and

plugins using separate web page instances. In OP2, if a frame is encoun-

tered by the web page instance, a new web page instance is automatically

created. Then, using window reparenting techniques, the frames are placed

in the correct position on the page. Like Gazelle, OP2 isolates frames and

uses content sniffing [15] to prevent a compromised web page instance from

reading cross-origin HTML content. We cannot prevent a compromised web

page instance from requesting sensitive cross-origin scripts, CSS, or images,

since this is allowed within same-origin policy and available to a uncompro-

mised web page instance. Gazelle has similar limitations, with the added

ability to render cross-origin images in separate web page instances.

This policy does differ from popular browsers, such as Firefox and Internet

Explorer, and since this policy is more restrictive it can cause incompatibil-

ities in the display of a page.

4.3 Improving compatibility

OP2 has improved compatibility for web pages compared to OP. While some

benefit comes from our use of the WebKit HTML and JavaScript engines, we

have devoted significant effort to make OP2 compatible with many different

web pages. In order to do this we have included additional support for

JavaScript to use our messaging API. For example, the XMLHttpRequest

object is able to use the OP2 network component through the messaging

API. We have also provided access to cookies within our storage component

from JavaScript again by using the messaging API.

Plugins have also received significant compatibility work. Currently we

support any plugin that uses the Netscape Plugin API (e.g., Flash, Java

runtime, and Silverlight). Our previous implementation required customized

support for each plugin to redirect calls into our messaging infrastructure.

We recognize there are potential compatibility problems with plugin policies

that place restrictions on plugins such as Flash and are currently working on

a more permissive policy. Loosening the plugin security policy can open the

door for potential exploit, and we are currently working on developing new
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browser policies that provide greater compatibility for plugins and evaluating

the cost to compatibility [45].

4.4 Optimizations in OP2

The original version of OP performed approximately as fast as Firefox 2 [46];

however, since then browsers have seen substantial enhancements that im-

prove performance. In our preliminary implementation of OP2 we found

that OP2 added measurable overhead when compared to other WebKit-

based browsers. The problem was that WebKit improved performance so

significantly that the latency we added to certain key operations, such as

downloading and displaying content for a new web page, caused a noticeable

delay in the overall page load latency time.

The fundamental issues in the original version of OP2 that caused increased

overhead were using new processes for each individual web page instance

and serializing slow operations, such as windows reparenting. By using new

processes for each individual web page we had to pay the process initialization

cost each time a user visited a new web site, and we precluded ourselves

from using any WebKit optimizations that assumed process reuse, such as in-

memory object caches. By serializing window reparenting we added overhead

directly to page load latency times.

To reduce this overhead, we optimized our web page instance management

and parallelized slow serial operations. Specifically, we improved the load

time of web pages in OP2 by using process pre-creation, parallelizing window

manager operations, caching previously-used processes, and loading frames

in parallel. The key to our optimizations is that we improve performance

without compromising the security assurances of our OP2 architecture.

4.4.1 Process pre-creation

OP2 creates a new web page instance for each page and each web page in-

stance requires a new process. During normal use, multi-process browser

architectures such as OP, Chrome, and Gazelle all use more processes than

their monolithic ancestors. As a result, the time it takes to initialize a new

process can add overhead. To avoid this added overhead, we pre-create web
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page instances during idle times and use these pre-created web page instances

to service new web page requests, thus avoiding process initialization over-

head for new web page instances.

4.4.2 Parallelizing window manger operations

As discussed in Section 4.2.4, OP2 uses window manager reparenting to com-

bine the display from multiple processes. During our testing of OP2 we found

that this design decision requires around 0.51 seconds to complete. In order

to eliminate this time from the overall page load time, we perform the window

reparenting asynchronously and allow the web page instance to load while

the window manager reparents the window. Although this optimization does

not eliminate the cost of reparenting windows, it does mask the cost while

the browser loads the page.

4.4.3 Process caching

WebKit uses an in-memory cache to provide fast retrieval of objects, such

as scripts and stylesheets. This object cache improves the page load latency

times by reusing web page resources shared between pages on subsequent

visits. Since OP2 creates new processes for each web page, our original

design was unable to use the object cache that WebKit provides.

To take advantage of the in-memory object cache, we implemented a pro-

cess cache that reuses old web page instances for new web pages. When the

browser navigates away from a web page, the previous web page instance

could be killed and cleaned up by the browser. However, rather than remov-

ing these old web page instances, we add them to a cache that the browser

kernel uses to service new web page instances. Each time the browser visits a

new page, the browser kernel will first check the process cache to see if there

are any web page instances that can be reused. If the browser kernel finds a

suitable web page instance, then it is used for the new request, thus enabling

the use of the in-memory object cache. If no suitable web page instances are

found, then it will use a web page instance from the pre-created process pool

for the new request.

One design decision we had to make was determining how to calculate
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cache hits for our process cache. One way we could have calculated cache

hits was by matching the origin of the request and the origin of cached

web page instances. For example, if there was a web page instance in the

process cache that was used for docs.google.com and the browser issued

a request for gmail.google.com, then it would reuse the docs.google.com

web page instance since both are from google.com. This approach has the

advantage of improving the hit rate by matching pages liberally, but has the

disadvantage of carrying around the state from the previous page, potentially

leaking information to the new web page instance. Instead, our approach is

to calculate cache hits based on the full URL of the request. This approach

has the advantage of carrying around state for only the exact web page that

was requested, thus minimizing potential information leakage, but will have

a lower hit rate than an origin-based scheme.

4.4.4 Parallelizing frames

Section 4.2.5 describes how OP2 performs frame isolation and display pro-

tection. In addition to improving security, isolating frames and running each

frame in a separate web page instance could potentially improve performance.

Since frames from different origins run in separate processes, OP2 naturally

parallelizes the execution and rendering of frames. This additional paral-

lelism can mask the latency added by our frame isolation techniques and

might be able help improve performance on today’s multicore systems.

4.5 Implementation

To implement OP2 we choose to use the Qt framework [5], and WebKit [6].

We implement all the subsystems using C++, and use SELinux [63] as an

option for sanboxing them. To enable window reparenting, we use XEmbed

protocol provided in X11 in Linux platform. To have better maintainability,

we choose to extend the framework of Qt and WebKit instead of modify-

ing their internal implementation. For example, WebKit’s Qt port uses a

default QNetworkAccessManager object to provide network capability. In-

stead of changing the network module in WebKit, we provide a subclass

of QNetworkAccessManager that uses OP2’s network subsystem. By do-
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ing this, we achieve minimal patch to original Qt and WebKit code base.

If WebKit or Qt is upgraded, we would easily be able to adopt the new

features into OP2. The whole set of source code of OP2 is available at

http://code.google.com/p/op-web-browser/

4.6 Summary

In this chapter we have described the OP2 web browser and the different

elements that make our browser secure and practical. By following the six

principles we discussed in Chapter 1, we are able to create a web client

capable of withstanding attacks. Specifically, we partition the browser into

smaller subsystems and make all communication between subsystems simple

and explicit. At the core of our design is a small browser kernel that manages

the browser subsystems and interposes on all communications between them

to enforce browser security policies.

The OP2 web browser is responsive to user interaction and implements

features that make it compatible with current web pages. We have demon-

strated that, by design, the OP2 web browser is not vulnerable to many forms

of browser attacks while not limiting the full functionality of the browser.
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CHAPTER 5

FORTIFYING WEB APPS
AUTOMATICALLY

The browsing systems we described in previous chapters provide secure foun-

dations for web browsing. Most of the architectural efforts focus on isolat-

ing and containing vulnerabilities in web apps. In this chapter, we discuss

browser-based mechanisms that try to add protection to the web apps them-

selves.

5.1 Introduction

The Web has become a popular platform for building web apps and provid-

ing convenient and diverse services for users. One contributing factor in this

rise in popularity is the features that browser developers add to browsers.

Unfortunately, these new features have also created new avenues for attack.

For example, web app developers can use frames (or IFRAMEs) to compose

web apps out of gadgets from different websites, but attackers can use frames

to embed legitimate web apps inside of attack pages to trick users via “click-

jacking” [49].

Browser developers have implemented security features to help web devel-

opers improve the security of web apps. Three examples of recent browser se-

curity features are HttpOnly cookies [4] that enable web developers to specify

cookies that should be inaccessible from JavaScript, X-Frame-Options [60]

to enable web developers to prevent their pages from being framed, and

JSON.parse() [3] to enable web developers to deserialize JavaScript Object

Notation (JSON) text safely and without executing JavaScript code.

However, web developers have been slow to use these new browser security

features [82, 90]. We surveyed the Alexa top 100 websites [10], and found

that these security mechanisms are not used widely:
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• There are at least 34 websites that do not set the HttpOnly attribute

on their credential cookies.

• Only 11 websites use X-Frame-Options to prevent their main or login

pages from being framed.

• Of the 16 websites that use JSON within five seconds after the page

loads, and only four of them use JSON.parse() to deserialize JSON

text.

In this chapter we present Zan – a browser-based system that fortifies

web apps by applying new security mechanisms to existing web apps auto-

matically. Our key insight is that the browser often has enough information

to determine when new security features could be applied to existing web

applications. This information can come from detecting common patterns in

the code that web developers write or from identifying fundamental features

of key web-app objects, like cookies. Our goal is to add simple mechanisms

to narrow the attack surface or mitigate the damage of a web-based attack

without requiring input from users or additional effort from web developers.

We also aim to minimize incompatibilities induced by our system.

In general Zan works by interposing on key states and events within the

browser to detect candidates for applying stronger security mechanisms au-

tomatically. For example, Zan inspects all cookies set by the web server

to detect certain key words (e.g., “token” or “session”) or randomness (e.g.,

hashed values) web apps tend to use within authentication cookies. When

Zan detects a combination of these conditions, it sets the HttpOnly attribute

for these cookies to make them inaccessible from JavaScript, preventing au-

thentication cookie theft via XSS attacks.

Our contributions are:

• We design and implement Zan, a browser-based system for applying

new security features to existing web apps.

• We show that web apps often contain enough information to allow Zan

to infer opportunities for applying new security mechanisms to legacy

web apps.
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5.2 Design

In this section, we discuss the threat model that Zan considers, and the

high-level design of Zan. We also describe the websites we study for Zan.

5.2.1 Threat model of Zan

Our primary goal is to narrow the attack surface of web apps or to mitigate

the damage of a successful attack. In our threat model, we assume that an

attacker controls a malicious website and can serve sophisticated crafted web

apps to the user, or that the attacker could escape sanitization processes to

inject malicious scripts into legitimate web apps. We focus on non-memory

based attacks and assume that the browser Zan uses is faithful. Attacks

that take control over a browser are still possible, such as a scenario in-

volving buffer overflow. In these cases, it would require a better design and

architecture of the browser system to improve the overall system security as

we will present in later chapters. It is also possible that the attacker could

completely compromise a trusted website, rendering Zan – a client-side sys-

tem – ineffective. This is a separate aspect of web security that we do not

address in this dissertation.

5.2.2 Design principles

As shown in Figure 5.1, Zan works as a module in browsing systems by inter-

posing on key states and events to infer opportunities to apply security mech-

anisms. In general, Zan is feasible because web apps often present enough

information at the client side to filter out important objects or identify ex-

isting protection logics. For example, cookies that contain authentication

tokens are likely obfuscated and have special names. A JavaScript-based de-

fense workaround, once proposed, is always copied and pasted into multiple

websites (e.g., frame busting we will discuss in Section 5.4).

In designing and implementing Zan’s different mechanisms, we follow the

these principles:

1. Use only information at the client side. We already see slow adoption

of new secure mechanisms in web app development. We hope a pure
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Figure 5.1: Deployment of Zan. Zan works by interposing on key states
and events of web apps within the browser to detect candidates for adding
protection automatically.

client-side solution could relieve the burden of web app developers.

2. Make the mechanisms simple. Browsers are already complex artifacts,

it is desired to ensure the new mechanisms simple and efficient to avoid

introducing new vulnerabilities.

3. Maintain compatibility of the web apps. It is necessary not to break

the Web. A protection mechanism that results in loss of function is

practically useless.

5.2.3 Websites used for testing

For Zan, we use a consistent set of websites as test cases. We first pick the

top 100 websites according to Alexa [10]. Because shopping and banking

websites contain valuable data, we also include the top six websites in each

category according to Alexa. Of course, if one of these is also in the top 100

websites, we skip it. We also use the top four web-mail sites according to

comScore.

In this set of websites, some offer several services using a single domain

and employ different security mechanisms among those services. To avoid

ambiguity, we choose to analyze the main service, or the front page one, when

we refer to a top website. For example, Google offers searching, calendar,

documents, and many more within google.com. But we always refer to
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Google search when we talk about google.com. In the remaining of this

chapter, top websites are always used to refer to the 116 websites described

in this subsection unless explicitly stated otherwise.

5.3 Case study: HttpOnly cookie

The first security augment that Zan enables is adding HttpOnly attributes

to credential cookies automatically. We begin the discussion with cookie

related issues as it is chronologically the first available feature among the

three we cover in this chapter. And HttpOnly is the earliest and most wildly

used one among the three security mechanisms.

5.3.1 Cookies

A cookie, or an HTTP cookie, is a piece of text stored on a user’s computer

by his or her browser, typically consisting of one or more name-value pairs

that the server and client pass back and forth. Cookies were invented by

Lou Montulli at Netscape in 1994 to facilitate electronic commerce applica-

tions [58]. Initially developed as a method for implementing reliable virtual

shopping carts, cookies were later pervasively used as the de facto way of

authenticating users to web sites and storing the login information so that a

web user does not have to keep entering their username and password each

time he or she visits a same web site. Cookies can also be used to store

identifiers so that web servers can track what the users have done during the

visit.

In today’s Web, part of cookie manipulation, like other computation, is

pushed to the client side. For example, in Facebook’s user sampling and

tracking module, the session identifier is generated using JavaScript in the

browser. A web app could also use document.cookie to set a cookie and

then try to read it back to test if the browser has cookie support. As web

apps continue to provide more versatile features, they also need a way for

access local storage. Before HTML5 local storage [101], web developers chose

to use cookies for storing data on the client.
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5.3.2 Attacks on cookies

Since cookies often contain time sensitive information, such as credentials,

and are relatively easy to access using client-side scripts, cookie theft is a

common result in Web-based attacks, such as XSS. For example, in a suc-

cessful XSS attack, the attacker from attack.com could easily steal victim’s

cookie using the following script:

var url

= ’http://attack.com/stole.cgi?text=’

+ escape(document.cookie);

var img = new Image();

img.src = url;

In the malicious script, the attacker uses document.cookie to retrieve the

content of the list of cookies that the user has for the page, and embeds

it into the query payload of a fake URL pointed to the attacker’s web site.

The attacker then creates a JavaScript image object on the fly and set its

source path to the fake URL. As a result, this list of cookies is sent to the

attack.com server.

Cookies also pose privacy threat [86] and enable the CSRF attack [113].

Mitigation methods are feasible but beyond the scope of this dissertation [16].

5.3.3 Alleviating cookie theft

An intuitive way to stop cookie theft in Web-based attacks is to address

XSS. However, despite of many efforts of preventing XSS, such as client-

side approaches [41, 81], server-side approaches [98], or hybrid client-server

approaches [48,70], XSS remains the top vulnerability [94].

There are also other ways of alleviating cookie theft. One could use HTTP

authentication instead of a cookie-based approach. As the authentication

information is not available to JavaScript in the cookies, nothing could be

revealed to an attacker with an XSS attack. Also, one could also tie session

cookies to the IP address that the user originates from and only permit that

IP to use the cookies, rendering the stolen cookie useless in most situations.

But it is possible that an attacker could spoof the IP address, or is behind
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the same Network Address Translation (NAT) firewall or web proxy, thus

breaking down the protection.

A declarative method, HttpOnly, was also been proposed. First introduced

in 2002 in Internet Explorer 2.0 [4], the HttpOnly cookie attribute has been

implemented in all major browsers. If the optional HttpOnly flag is included

in the HTTP response header for a cookie, the cookie cannot be accessed by

client-side scripts. As a result, the browser would not reveal authentication

cookies to the attacker in an XSS attack if they are properly tagged with

HttpOnly flags.

Surprisingly, the HttpOnly attribute has not been throughout deployed

in today’s Web, even though it was invented almost 9 years ago. For top

websites, our survey shows that of the 93 websites that we are able to obtain

accounts for and login to, 39 still have not incorporated HttpOnly.

5.3.4 Applying HttpOnly automatically

Fortunately, credential cookies often exhibit certain characteristics. We stud-

ied the 54 websites that use HttpOnly cookies. In some cases, cookies with

HttpOnly are not necessarily used for authentication, but at least should not

be accessed by client-side scripts. Still, analysis on the whole set would give

a close enough estimation of characteristics for the login cookies. The pre-

liminary experiments show that they generally exhibit three key properties:

• They tend to have English phrases related to authentication in their

names such as token, session, and so on.

• Their values exhibit greater randomness than non-HttpOnly cookies.

• They use relatively long strings for their values compared to the cookies

without HttpOnly.

Table 5.1 shows the distribution of meaningful English phrases in the

names of HttpOnly cookies. It shows that at least 54% of them use phrases

related to authentication, indicating we could use cookie name as one hint

to decide if a cookie should be tagged as HttpOnly.

A well-known way to measure the randomness of a string is to calculate its

entropy. There are many entropy models, and in Zan we use the Shannon
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Phrase Count

*sid$ 122
*auth* 23

*session* 21
∧nid$ 18

*token* 14
*sess$ 11
other 174
Total 383

Table 5.1: Common phrases for HttpOnly cookie names. This table shows
phrases (case insensitive) used as the names of HttpOnly cookies in top
websites, where * means any combination of characters, while ∧ and $ means
the begin and end of string respectively.

Property
HttpOnly Non-HttpOnly

Aver. Stdev. Aver. Stdev.

Entropy 4.00 1.60 2.83 1.82
Length 102 128 48 83

Table 5.2: Characteristics of HttpOnly and non-HttpOnly cookie values.
This tables shows the average and standard deviation of entropy and lengths
of HttpOnly cookie values and non-HttpOnly ones in the top websites that
use HttpOnly.
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Entropy Equation defined as:

H(X) = −
∑
x∈X

p(x) logb p(x)

where p(x) is the probability mass function of a character x appeared in the

string X [87].

We show the average and standard deviation of our entropy calculations

in Table 5.2. HttpOnly cookies have an average of 1.17 more bits of entropy

than cookies without the HttpOnly attribute. Table 5.2 also shows that

HttpOnly cookies on average have 54 more characters than non-HttpOnly

ones. These are not coincidences. It is common that credential cookies are

encrypted using hashing algorithms such as MD5 or SHA1. At the same

time, web sites need to use long enough strings for session tokens in order to

avoid collision among different users.

Using data provided in Table 5.2, we can use a standard Gaussian distri-

bution classifier to decide if a cookie resembles a credential one. The classifier

we use in Zan is

τ =
µh − µnh

σh + σnh
σnh + µnh

where µh and σh are the mean and standard deviation for HttpOnly cookies

respectively, while µnh and σnh are the mean and standard deviation for

non-HttpOnly ones. τ defines the delineation between HttpOnly cookies and

non-HttpOnly cookies, so we then can assume that a cookie with entropy

greater than 3.45 bits or containing 70 or more characters is likely one that

should be tagged with HttpOnly.

Based on above information, we developed an algorithm to automatically

detect credential cookies. The algorithm is defined as:

1 if (origin == JS || hasHttpOnlyAttr())

2 return;

3 for c in (the list of cookies)

4 if (c.name is common phrase)

5 if (entropy(c.value) > 3.45)

6 || len(c.value) > 70)

7 c.httponly = true;

8 else

9 if (entropy(c.value) > 3.45
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10 && len(c.value) > 70)

11 c.httponly = true;

When a list of cookies is passed in with an HTTP request, we apply the

algorithm to their name-value pairs. First, we only examine network cook-

ies (lines 1 and 2). For cookies that are set by JavaScript, we skip the

algorithm because they are by definition not HttpOnly cookies. Meanwhile,

when HttpOnly is already present, we honor the web developer’s decision

and ignore the rest of the algorithm (lines 1 and 2).

Next for each cookie in the list, we check if it uses a common phrase, which

is presented in Table 5.1, for its name. For the one that uses a common

phrase, we assume it is most likely a credential cookie and use a relatively

loose classifier on the entropy and length of its value. We would tag cookie

with HttpOnly as long as either its entropy or length falls into the range of

a credential cookie. For the one that does not use common phrase, we use

a relatively tight standard. Only when both its entropy and length meet the

bar of credential cookie, we opt to apply HttpOnly on it.

The overall algorithm is conservative to some extent as we will show later

in the evaluation (Section 7.1). We choose to be conservative because setting

HttpOnly on too many cookies would sometimes affect the compatibility and

usability of web apps. If a cookie that is supposed to be used by JavaScript

has been set with HttpOnly, the web app could function incorrectly. Mean-

while, missing a single credential cookie is not a serious problem as long as

the attacker is not able to retrieve the complete set of authentication cookies.

5.4 Case study: frame-based attacks

In this section we discuss the state-of-the-art in frame based attacks and de-

fense techniques. We also describe our algorithm for providing more complete

defenses against frame-based attacks.

Back in the era of Netscape Navigator in early 1990s, the HTML FRAME

element was introduced to allow web developers to delegate a portion of

their document’s visual display to another entity. These frames can then be

navigated to independent documents, which can delegate their share of the

screen further to sub-frames. The FRAME tag was inflexible and was replaced
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by the more versatile IFRAME tag, which was introduced by Internet Explorer

in 1997.

IFRAMEs enable modern browsers to display one web document inside an-

other at an arbitrary position, creating a complex frame hierarchy. Browser

present only the URL of the main, or top-level, frame to the users in the

address bar. Consequently, it is infeasible for an average user to distinguish

sub-frames from other parts of a page. This inconsistency, coupled with

flexible display overlaying mechanisms available in browsers, creates the op-

portunities for frame-based attacks.

5.4.1 Frame-based attacks

Frame-based attacks were first reported 2008 when Hansen and Grossman

introduced the term “clickjacking” [49]. In a clickjacking attack, the attacker

chooses a clickable region on the target website that the user is currently

authenticated on (e.g., a “like” button in a Facebook page). To perform the

attack, a malicious website will load a page from the victim website inside an

IFRAME, using Cascading Style Sheets (CSS) to make it transparent. At the

same time, this transparent clickable element is placed on top of some visible,

fake, but interesting clickable gadget (e.g., click to win a free iPad). As a

result, the user would “like” an attacker chosen page in Facebook instead

of unrealistically winning a free iPad when he or she clicks it. Evidence

shows that major websites such as Facebook, Twitter have already suffered

from clickjacking attacks [19, 99]. There are also other variants of this same

basic attack that use similar mechanisms to induce users to click on a page

unwittingly.

As the Web evolves, the capability of frame-based attacks also improves. In

recent research, Paul Stone demonstrated the next generation clickjacking by

showing four new techniques [91]. In the new attack scenarios, the attacker

could potentially use the drag-and-drop API in HTML5 and some social

engineering to inject text into fields of victim, which could be used to sent

fake emails from a user’s account. An attacker could also extract content

from the enclosed frame, which could be used to steal sensitive information

such as passwords, or tokens that are used to authenticate a session and guard

against cross-site request forgery (CSRF) [113] attacks. Stone also showed
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that it is possible to use this new technique to achieve login detection that

is used to facilitate CSRF or other clickjacking attacks.

5.4.2 Preventing framing

Fortunately, while a number of different techniques have been discovered to

carry out frame-based attacks, they can mostly be defeated by some correctly

used methods.

Frame busting was the first technique that was suggested to counter click-

jacking attacks [49]. Frame busting often refers to a snippet of JavaScript

code included in a web app that intends to prevent this web app from being

included in a sub-frame. A simple example of frame busting is shown here:

if (top.location != self.location)

top.location = self.location;

Typically, it includes a condition statement to detect if the web app is

embedded in a frame. If so, the next statement acts as the countermeasure

to break out and load the web app in place of the web site that is framing it.

Unfortunately, this JavaScript-based approach is not always effective, and

there is a list of ways to defeat it as described by Rydstedt et al. [82].

For example, a malicious site may try to use the onbeforeunload Document

Object Model (DOM) event to prevent a framed site from navigating to a

different URL, or merely disable scripting in the framed web page.

Another option for preventing web apps from being framed is the

X-Frame-Options introduced by Internet Explorer 8 [60], which now widely

implemented in all modern browsers. X-Frame-Options, as a declarative

method, provides a clear and robust approach to avoid unsolicited fram-

ing. X-Frame-Options can be used either in a HTTP response header of

a web page or as a HTML “http-equiv” META tag in the web page itself.

X-Frame-Options has two options: (1) DENY - the browser prevents the

page from rendering if it will be contained within a frame; and (2) SAME-

ORIGIN - the browser blocks rendering only if the origin of the top-level

browsing context is different than the origin of the content containing the

X-Frame-Options directive. We also observe a third option – ALLOW –

used by some IFRAMEed advertisements . We posit that it is used to ad-

vise the browser to allow the embedding in any case. Although more robust
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Defense Front page Login page

Frame busting 19 34
X-Frame-Options 7 14

Table 5.3: Frame busting and X-Frame-Options usage among top websites.

than frame busting, X-Frame-Options also has a potential pitfall. When

X-Frame-Options is included in the HTTP header, a web proxy could strip

it, leaving the page unprotected.

However, like the HttpOnly attribute, anti-framing mechanisms are not

sufficiently incorporated in top websites. Some websites use frame busting

code and a few have started to use the new X-Frame-Options feature (Table

5.3).

5.4.3 Zan frame defense

As discussed above, both frame busting and X-Frame-Options have short-

comings and they are also poorly incorporated in top websites. To better

counter frame-based attacks, we implement the following algorithm for each

IFRAME in Zan.

1 if(hasXFrameOptions())

2 return;

3 state = init;

4 for s in (all JS statements):

5 if(state == init && isFrameDetect(s))

6 state = nav;

7 if(state == nav && isTopFrameNav(s))

8 injectXFrameOption();

When X-Frame-Options is present in a web app, we honor whatever the

web developer sets and ignore the rest of the algorithm (lines 1 and 2).

Next, the algorithm detects conditional statements that are predicated on

detecting framed pages (line 5). Fortunately, frame detection code tends to

exhibit some fairly simple patterns. For the 34 websites we found with frame

busting code, the frame detection patterns we found are shown in Table
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Type Number

top != self 17
parent.frames.length != 0 2
parent.frames.length > 0 2

top.location != self.location 4
window.self != window.top 3
top.location != location 3

window.top != window 2
top.location != window.location 1

Table 5.4: Conditional statements used for detecting framing. This table
shows the distribution of the frame detection code found in the 34 websites
shown in Table 5.3. self != top is put in the same category of top !=

self. And != is considered the same as !==. Whitespace is ignored.

Type

top.location = loc

top.location.href = loc

top.location.replace(loc)

parent.location.href = loc

Table 5.5: Frame busting navigation countermeasures. This table shows
the four navigation countermeasures used when framing is detected that we
observed from websites that deploy frame busting code.

5.4. To find frame detection code, the isFrameDetect() function inspects

JavaScript statements to check for one of the patterns listed in Table 5.4.

However, using frame detection code alone would induce false posi-

tives because these basic patterns are also used for functionality other

than frame busting in web apps. To reduce false positives, we only

inject X-Frame-Options if we also detect a countermeasure navigation

statement (line 7). To find countermeasure navigation statements, our

isTopFrameNav() function searches JavaScript statements for one of the pat-

terns shown in Table 5.5. In these navigation countermeasures, loc could be

any URL that the web author wants to use for replacing the top-level frame.

The patterns we detect are less diverse than what we observe for frame de-

tection. A recent study suggests that other countermeasures as well [82], but

our evaluation indicates these four work well for top websites.
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When Zan detects frame detection code and countermeasure navigation

statements, we apply X-Frame-Options with the SAMEORIGIN option to

framed web apps (line 8), preventing them from being displayed as frames

inside web pages that are from different origins.

This heuristic algorithm will not detect all frame busting code and it could

detect frame busting code when there is none, but it is simple, efficient, and

accurate for the websites that we examine (see Section 7.1 for more details).

The algorithm also has some flexibility built in. Browser developers could

adjust the number of frame detection or frame navigation statements the

algorithm searches for to trade-off more aggressive security against compat-

ibility.

One alternative and more aggressive defense could be to apply

X-Frame-Options to any websites that have username and password fields,

thus protecting login sites from frame-based attacks. However, we did not

evaluate this more aggressive defense in this dissertation.

5.5 Case study: secure JSON parsing

Before the era of “Web 2.0”, a full page re-load was required to update

information on a webpage. The problem with this approach is that it is

neither efficient or elegant. In terms of efficiency, the server was required

to send a full version of the page to the client even for minimal content

modifications, and in terms of elegance it forced visual resets of the screen

requiring the client to wait while the refresh occurred. As such, websites

needed a way to update information on the page less obtrusively, thus, Ajax

was developed to enable asynchronous communication between the client

and server. Ajax originally used the XMLHttpRequest object to transfer

XML formatted data. Recently JSON has become an XML replacement in

Ajax because it is simple and can be easily encoded into several popular

programming languages.

5.5.1 JSON and exploiting JSON

JSON is a subset of the object literal notion of JavaScript. Originally speci-

fied by Douglas Crockford in RFC 4627, JSON is now supported in all major
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browsers as part of JavaScript. JSON can be used in client-side scripts to

facilitate easy data exchange with servers. Below is an example of a simple

JSON string:

{"employee": [

{"name": "Alice", "sex": "female"},

{"name": "Bob", "sex": "male"}]}

In this example, the JSON string represents an object that contains a

single member ”employee”, which contains an array containing two objects,

each containing ”name”, and ”sex” members.

JSON is often used together with XMLHttpRequests to enable the browser

to exchange data asynchronously with the server. If an XMLHttpRrequest

returns the above JSON string stored in a variable called jsonText, it can

be converted into a JavaScript object using the JavaScript eval() function,

which invokes the JavaScript compiler as shown in the following code snippet:

jsonObject = eval(’(’ + jsonText + ’)’)

Since JSON is a proper subset of JavaScript, the compiler will correctly

parse the text and produce an object structure. For example, one can use

jsonObject.employee[0].name to access the first employee’s name. To

avoid ambiguity in JavaScript’s syntax, it is also recommended that the JSON

text be wrapped in parentheses as shown in the statement above.

However, since eval() invokes the complete JavaScript compiler, it could

execute any JavaScript program besides JSON, leading to potential security

vulnerabilities. Typically in a web app, JSON is used over XMLHttpRe-

quest, which is commonly restricted to communicate only with the origin

that the web app comes from. Thus, the source is trusted. However, if the

server does not provide correct JSON encoding, or it embeds user supplied

content in JSON text without rigorous sanitization, it could deliver prob-

lematic JSON text to the client that could contain malicious scripts (e.g.,

CVE-2007-3227). The eval() function would then execute the script, re-

sulting in an XSS attack. Assume in the above example, the name of an

employee is provided by the user. If the user could enter a malicious script

such as ", "arb": alert(document.cookie), "": " instead of a real

name,the resulting JSON text would become:

68



...

{

"name": "",

"arb": alert(document.cookie),

"": "",

"sex": "female"

},

...

When evaluated, the web page displays an alert showing the cookies for the

active session. This threat has already been reported for real world websites

such as in Google’s personalized homepage and can be used for more serious

script injection attacks [83].

5.5.2 Native JSON

To minimize script injection via JSON parsing, it is suggested that web devel-

opers use regular expressions to validate the data prior to invoking eval().

However, browser developers added a new function, JSON.parse(), as a safer

and more robust alternative to eval() that parses JSON text without exe-

cuting scripts.

JSON.parse(), which only recognizes JSON text, rejects all possible em-

bedded malicious scripts. Additionally, JSON.parse() only parses JSON text

that adheres to the JSON standard and will reject any malformed JSON

text. Fortunately, browsers implement functions for converting JavaScript

data structures into JSON text. These serialization and deserialization rou-

tines are well supported in most recent browsers as Native JSON. However,

web developers have been slow to adopt this new security feature as well.

5.5.3 Automating JSON.parse() adoption

To prevent script injection via JSON, Zan inspects all strings passed into

the JavaScript eval() function:

1 s = fixupEvalString(evalString);

2 if(s.startWith("({") && s.endWith("})"))
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3 return zanParse(s);

4 if(s.startWith("([") && s.endWith("])"))

5 return zanParse(s);

If the algorithm detects a string that looks like a JSON object, it will

pass that string to the JSON.parse() function automatically. Our logic for

detecting JSON objects checks the beginning and end of the eval string to

find the “({” and “})” (line 2) or the “([” and “])” (line 4) strings respec-

tively. These checks will find cases where developers use JSON objects but

an attacker was able to pass unsanitized JavaScript into the JSON object,

thus thwarting this type of script injection attack.

For the websites we examined, we found a few cases where web developers

use JSON, but the JSON text was not formatted according to the strict

JSON grammar. To ensure that these almost-valid JSON strings can still

pass through we used a modified JSON.parse() parser for parsing JSON

text with a slightly updated grammar to handle these cases (lines 3 and 5).

Specifically, we allow single quotes in addition to double quotes and we accept

name strings that omit enclosing quotes. Additionally, we have a function

that fixes up eval strings to make our detection logic easier by remove some

whitespace to ensure that the JSON brackets and braces make it to the

beginning and the end of the eval string (line 1). With these modifications,

the Zan algorithm parses all JSON objects we observed in our tests.

Although this algorithm is simple, efficient, and effective, there are a few

cases where it could fail. A web developer could use a JSON object that

deviates from the JSON standard, but is still detected by our algorithm

as JSON, resulting in a failed parse. We found a few cases of this type

of deviation and correct for it by updating our JSON grammar, but other

similar instances are also possible. Another problematic scenario is when an

attacker replaces JSON text altogether with malicious JavaScript, which we

would pass to eval(), missing the attack.

5.6 Case study: DOM-based XSS prevention

In a DOM-based XSS attack a malicious payload is injected into the vulnera-

ble web application during execution by the browser. To prevent DOM-based
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<HTML>

<HEAD><TITLE>Hello</TITLE></HEAD>

<BODY>

Hi

<SCRIPT>

var pos = document.URL.indexOf("name=") + 5;

var len = document.URL.length;

var name = document.URL.substring(pos,len);

document.write(name);

</SCRIPT>

</BODY>

</HTML>

Figure 5.2: A simple web app with DOM-based XSS vulnerability.

XSS attacks, we have implemented data flow tracking in the web page in-

stance and developed suitable mechanism to prevent untrusted text from

being executed as JavaScript.

In Figure 5.2 we show a simple web application with DOM-based XSS

vulnerability. In the example the JavaScript parses the URL to obtain the

visitor’s name and then embeds the name into the page’s HTML. Assuming

this web application is hosted at http://www.domxss.com, a URL such as

http://www.domxss.com/#name=Alice would work as developer intended

and print “Hi Alice” in the web page. However, an attack can be con-

structed using a URL such as http://www.domxss.com/#name=<script>

alert(document.cookie)</script> causing the web app to write the script

tag into the document and then execute it. The attacker can tricking users

into visiting a malicious URL like this to exploit the web app.

5.6.1 Taint tracking

In our system, objects originated from untrusted sources are marked as

tainted and taint information is propagated as the web application inter-

acts with tainted data. Our system propagates taint information at the

JavaScript object level and we have extended both JavaScript and HTML

engines to support taint tracking. In the JavaScript engine, we have added

a field to every JavaScript object to indicate if an object is tainted. To
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propagate taint, we handle three types of operations on JavaScript objects:

assignments, logic or arithmetic operations, and string manipulation. In an

assignment, the left operand becomes tainted if the right operand is tainted.

For logic or arithmetic operations, the result is tainted if any of the operands

are tainted. For string manipulation, the resulting string is tainted if it con-

tains content from tainted sources. For example, any substring of a tainted

string is tainted as is the lower case conversion of a tainted string. Similar

to Yip et al. [111], our system does not track of implicit data flows.

In addition to the JavaScript engine, our system also needs to track data

flow inside the HTML engine since JavaScript objects can be stored in the

DOM tree and later retrieved by other JavaScript. To solve this problem, our

system taints the DOM nodes where tainted JavaScript objects are stored and

upon retrieval, taints the JavaScript objects that interact with the tainted

DOM node.

5.6.2 Preventing DOM-based XSS

With the taint tracking capability, Zan is able deploy new security policy in

the client side to prevent DOM-based XSS.

To prevent DOM-based XSS attacks, DOM objects that could be con-

trolled by an attacker are marked as tainted. Objects that we consider

tainted are: document.URL, document.referrer, document.location, and

window.location. This policy forbids the JavaScript engine from exe-

cuting tainted text by using propagated taint information. If JavaScript

source is constructed from tainted DOM objects, the interpreter will

refuse to execute the tainted input. Using the example shown in Figure

5.2, a URL containing a script payload (http://www.domxss.com/#name=

<script>alert(document.cookie)</script>) will result in the script text

written to the page being tainted. When the JavaScript engine is invoked to

execute the contents of the script tag, our policy prevents it from executing.

We evaluated this policy and proved that this policy is able to prevent all

the attacks we examined while not introducing any incompatibilities in other

web applications.
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5.7 Implementation

Zan is implemented on top of OP2, which provides a clear and robust archi-

tecture for implementing the security features we describe in Chapter 5.

For the cookie protection algorithm, we modify the cookie subsystem in

OP2 to enable our algorithm. OP2 uses a clear message passing mechanism

for cookie access and Zan interposes the messages passed into the cookie

subsystem. Each time the cookie subsystem receives a list of cookies from

an HTTP response, Zan applies the algorithm described in Section 5.3 to

the cookies, and tags HttpOnly attribute appropriately. There is no need

to modify the cookie read procedure, because the cookie subsystem then

prevents HttpOnly cookies from being accessed by client-side script.

For the frame-based attack defense, we interpose the HTML parser (which

all static JavaScript source code also need to go through first) used in WebKit.

Zan uses simple string pattern matching routines to detect the existence of

frame busting code using the algorithm proposed in Section 5.4, and then

applies the same anti-framing method that X-Frame-Options implementa-

tion uses in WebKit. Login pages alway contain password fields, if needed,

we detect those fields to as the hint to apply X-Frame-Options to them.

For automatic JSON.parse() adoption, we intercept the eval() calls by

modifying its implementation in WebKit according to our safe JSON method

described in Section 5.5.

For DOM-based XSS prevention, we modify the WebKit’s HTML and

JavaScript engines. Basically, we add a bit field for taint information in every

DOM and JavaScript object. To propagate taint information, we instrument

all assignments, arithmetic or logical operations, and string manipulation in

JavaScript, as well as all types of C++ constructors related to those objects

behind the scene. We then intercept all the strings passed to JavaScript

engine, and stop the execution if one is tainted.

5.8 Discussion

A complete security solution is always desired, but is extremely hard to

achieve for a complex system like the Web that consists of hundreds of thou-

sands of various web apps. In this section, we discuss the lessons we learn
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through designing and implementing Zan, and also articulate some issues

related to the approach of Zan.

5.8.1 Generality

The insight behind Zan is that client side software can infer the intentions

of web app developers on important objects and special code logics. But is

the approach of Zan generic enough to apply to other features besides the

four we discussed in this section?

The development of web app security is mostly a history of patching and

fixing bugs. Web apps usually did not have a clear mind of the model of

security threat at the first place when introducing new features, such as

JSON deserialization and cross-origin frame communication [17]. Later, they

would realize the problems and replace the old workaround with more robust

and secure methods such as JSON.parse() and postMessage. Nonetheless,

old approaches always exhibit common patterns, enabling potential detection

and automatic replacement such as the secure JSON parser we described in

this chapter. While automated postMessage would be harder to implement,

it would not be totally infeasible.

In addition, we could analyze the tendency of use JavaScript-based de-

fense. It is very common that after one entity (e.g., a website or a security

researcher) discovers a piece of JavaScript code that could add defense to

unprotected web apps, every other website follows on to copy and paste the

same code snippet into their code base, or at least use similar approaches. So

when a more reliable mechanism is supported later for the same security vul-

nerability, we could possibly detect these outdated JavaScript workarounds,

such as the frame busting techniques we discussed.

Overall, there is no guarantee that Zan’s approach is generically applicable

to all the security mechanisms for web app security. However, we argue that

when a mechanism exhibits similar characteristics as the ones we discussed,

it is possible to employ Zan’s approach to automate its application.
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5.8.2 Use of heuristics

Zan includes the use of heuristics for security. While server-side and hybrid

approaches have full control of the web apps and could deploy more sound

defense mechanisms, we already observe that web app developers are slow to

do so. Pure client-side approaches do not require extra work in the server

side, but have to recover or infer implicit information using methods such as

heuristics.

One problem with using heuristics is that they are not 100 percent ac-

curate, leading to a critique of this approach. Two typical concerns are: 1)

whether the approach adds or improves protection for all possible candidates;

2) whether the approach results in incompatible web apps.

Of the two concerns, we argue that the second one is more important. A

security mechanism resulting in loss of function in a web app is undesirable.

Consequently, one has to preserve compatibility. However, it is not impossible

that a heuristics-based mechanism can be both effective and compatible.

There are real world examples of heuristics-based client-side protection. For

example, Internet Explorer 8 uses heuristics to implement its XSS filters [81].

5.8.3 Deployment and evaluation

When introducing a new mechanism to the Web, we have to think about

how to deploy it, whether it will cause new problems, and how to evaluate

its impact.

We argue that Zan can be incorporated into modern web browsers grad-

ually. Browsers with and without Zan capability in general will not exhibit

fudementally different interpretation of a same web app. Zan does not rely

events and states that can be multiplexed for different purposes. For exampe,

credential cookies should only be used for authentication between browsers

and servers. It is a bad practice to incorporate script manipulation of them

into a web app. It is possible that an attacker could inject frame busting

code to try to cause denial-of-service by confusing Zan. But in most cases,

a web app is not embedded in a cross-origin frame. Even if Zan detects the

frame busting code, it will not prevent the rendering of the web app.

It is reported that existing pure client-side defenses such as XSS filters in

Internet Explorer have introduced new vulnerabilities into the browsers [71].
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As browsers are already complex artifacts, adding complex defense mecha-

nisms would be problematic. However, we argue that all the mechanisms we

demonstrate are simple (less than 100 lines of code each), and do not change

the structure or content of a web page. Our secure JSON deserialization de-

fense does change the JSON strings a little bit. But what Zan tries to do it

enforcing better format according to standards. Nevertheless, it is infeasible

to prove that there is no new vulnerabilities added. The only way we can do

is to keep Zan simple.

It is generally hard to evaluate something on the scale of the Web. The

Web consists of hundreds of thousands of different web apps that are not

implemented in a consistent way. Automated testing is required to ana-

lyze a reasonably large number of websites. However, most websites employ

mechanisms to prevent non-human users from using certain features, such

as CAPTCHAs. Even established research that aims to study the Web in

large scale tends to be ambiguous. For example, Singh et al. did not log

into the websites they surveyed, compromising the confidence of the study

(e.g., Facebook is certainly not the same complex web app when not logged

into) [90]. For the evaluation we will present in Chapter 7, we argue that

while Zan might not be thoroughly tested, it presents encouraging results

and a preliminary study of using these mechanisms.

5.9 Summary

In this chapter, we presented a generic approach for automatically adding

new security features to existing web apps. Zan accomplishes this by inspect-

ing events and states in the browser to exploit opportunities for retrofitting

legacy web apps with new security features. We presented three algorithms:

HttpOnly cookie designation, which automatically restricts access to authen-

tication cookies, X-Frame-Options specification, which denies the inclusion

of web apps in IFRAMEs, and JSON.parse(), which detects eval() calls on

JSON text and parses them in safe routines. Each of these algorithms cap-

italize on unique details about applications to provide automated security

mechanisms.

On key aspect of our approach is that our algorithms are simple. As

browsers are complex artifacts, it is necessary to maintain this feature for

76



the development of practical systems. Despite their simplicity, our algo-

rithms are effective at improving the security of several of the websites we

evaluated. Furthermore, two of our algorithms, HttpOnly and IFRAME de-

fense, are tunable and can be adjusted by browser developers to trade-off

security against compatibility.

As web apps become increasingly popular, improving their security be-

comes paramount. Browser developers have been proactive in providing new

security mechanisms, but web developers have either been too slow to adopt

these new features or manage complex code bases that make it difficult to

adapt legacy systems. Zan is a system that can help improve the security

of legacy web apps where web developers have neglected to use the security

mechanisms available to them. We argue that Zan presents a reasonable

attempt to address this situation, and hope it could lead to future practical

applications.
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CHAPTER 6

USING FORMAL METHODS

Security evaluation is hard. Researchers sometimes turn to formal methods

for help and hope to have a system theoretically proved. In this chapter, we

present our work of modeling the high level design of the OP browser kernel

and partly verify the correctness of some security properties we want to have

in the browser. We also examine the possibility of formally verifying IBOS

TCB.

6.1 Introduction

The security of web browsing is a pressing problem in modern computer sys-

tems. Even though tremendous efforts have been spent on web security, most

of them rely on unverified assumptions about other untrustworthy compo-

nents of the Web. Particularly, web browsers and the supporting operating

systems, which were designed without analytical foundations, provide little

formal assurance about the overall web security. In other words, security

mechanisms are only as trustable as the browsing systems they run on. As

the Web continues to evolve, reasoning about the security of the platform

will increase in importance.

Formal models and tools have been useful in evaluating the security of

file systems [109] and network protocols [22]. We believe that, with proper

architectural support, formal methods can also be used to improve the design

of browsing systems and provide high trustworthiness of the systems.

In this chapter, we present our initial work towards applying formal meth-

ods to web-based systems. Specifically, we first present the formulation of

the OP web browser within the logical framework of rewriting logic and how

use formal reasoning tools to verify model correctness, including the pres-

ence of attacks, successful compromises and access control. We show that
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formal methods can help the design of secure web browser by verifying two

example security invariants: 1) the address bar displayed within our browser

user interface always shows the correct address for the current web page; 2)

access control implemented in the browser kernel enforces the same-origin

policy specified as invariants for browser-level components.

We also investigate the possibility of verifying the TCB of IBOS. Formally

verified TCB for the browsing system means that for the first time we have

a truly trustworthy foundation for secure web browsing. We discuss the

challenge of verifying IBOS TCB and also provide some further goals once

we have the verified IBOS kernel.

6.2 Maude background

In this dissertation, we use Maude as the tool for formal verification. Maude

is a high-performance reflective language and system supporting both equa-

tional and rewriting logic specification and programming for a wide range

of applications. In particular, it supports very well object-oriented compu-

tation. Once having a proper model of a system implemented in Maude,

we can use its model-checking capability to validate some of the assertions

required in the system.

A simple example using Maude and model-checking of invariants is pre-

sented in the Maude Manual [27]. The example involves the model of a clock

and uses Maude to search the state space for states with invalid hour values.

The Maude model for the clock example is presented in Figure 6.1. This

example illustrates several Maude features, though we only describe the ones

relevant to the OP browser model we present later.

Figure 6.1 shows the Maude model named SIMPLE-CLOCK. The third

line defines a sort, called Clock. A sort is similar to the class keyword

in C++ and simply defines a category for later use. Line 4 in the figure

contains the definition for an operation called clock; operations act on a

sort and generally connect a sort (or set of sorts) to a different set of sorts.

In the SIMPLE-CLOCK model, the sort Int and the sort Clock are related

by the clock operation, which, given an integer T, produces a Clock object –

clock(T) having time T. Rewrite laws begin with rl and describe transitions

between states. The SIMPLE-CLOCK model has one rewrite law. This
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1 mod SIMPLE-CLOCK is

2 protecting INT .

3 sort Clock .

4 op clock : Int -> Clock [ctor] .

5 var T : Int .

6 rl clock(T) => clock((T+1) rem 24) .

7 endm

Figure 6.1: A simple Maude example. This figure shows a Maude example
from the Maude Manual (Version 2.3). This example describes a model for
a 24-hour clock in Maude.

search in SIMPLE-CLOCK :

clock(0) =>* clock(T)

such that T < 0 or T >= 24 .

Figure 6.2: The search statement in Maude. This figure shows a search
statement from the Maude Manual (Version 2.3) showing how to model-check
the SIMPLE-CLOCK model invariant using Maude’s search functionality.

rewrite law says that the clock operation increments the clock variable T

and then takes the remainder after dividing by 24.

Once we define a model in Maude, we can use the search command to have

Maude explore the state space and find states that match our search criteria.

For the SIMPLE-CLOCK example we want to find states that violate an

invariant, such as the clock’s state being outside of the 0 to 24 range. Figure

6.2 shows the example search statement for the SIMPLE-CLOCK model.

This search statement defines an initial state, clock(0), and the condition

to match when searching. The invariant is verified because no state violating

it can be found.

The Maude model for the OP browser consists mostly of definitions of types

and state for each component by defining sorts, operations, and state vari-

ables for each browser component. To define browser behavior, we use rewrite

laws to show transitions between different internal states in the browser. Our

invariants are specified as statements and we use the same search function-

ality in Maude to find matching states.
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6.3 Validating browser design

We designed the OP web browser to include the use of formal methods to

verify its correctness. To better support formal methods we use small, simple,

and exposed APIs that allow us to model our system and reason about it.

Using formal methods, we are able to provide greater assurance that we

preserve our security goals during an attack and compromise.

We formulate the OP web browser within the logical framework of rewriting

logic and use formal reasoning tools to verify model correctness, including

the presence of attacks, successful compromises, and access control [26]. The

reasoning engine we use is the Maude system [65]. We use the term “Maude”

to refer to both the Maude interpreter and the language.

Once the browser model has been formally specified we can use Maude’s

search ability for model-checking to verify invariants over the finite state

space we need to consider. The invariants of a browser system fall into two

categories: program invariants and visual invariants. Program invariants for

OP consist of the goals of the access control policy. These invariants are

relatively easily gathered from the source code and concise specification of

security policy. The visual invariants (e.g., preventing address bar spoofing)

need extra effort to be mapped into program invariants. In this dissertation,

we model these invariants, and we also translate browser compromise and

built-in defenses into rewriting logic rules. As we explain in the following,

OP’s address bar logic and same-origin policy are specified by rewrite rules

and equations in Maude, and we use model-checking to search for spoofing

and violation of same-origin policy scenarios. The result of the search is a

list of states that are violations of the invariants specified and the sequences

of actions that lead to the invalid state. States that are violations of secu-

rity invariants can assist in the development process by catching potential

problems before they are exploited.

In this section we discuss how we use formal methods to improve the design

of our browser. We discuss how we created our model, and describe how we

model-check it to prove the absence of address bar spoofing attacks and to

verify parts of our same-origin policy model.
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6.3.1 Formal models and system implementations

There is often a gap between the formal model used to verify properties and

the system implementation. While we recognize that this gap exists between

our model and system, we feel that for our uses of formal methods, thanks

to the executable nature of the Maude specification, the difference is small

enough that we are able to use the results of model-checking to iterate on

design and development. Since we implement each of the browser compo-

nents separately and use a compact API for message passing, the model that

we use to formally verify parts of our browser is very similar to the actual

implementation. The model we have created is focused on message passing

between components. We do not verify, for example, that the HTML parsing

engine is bug-free; instead we verify that, even if the HTML parsing engine

had a bug, the messages that a code execution attack could generate (po-

tentially any message) would not force the browser as a whole into a bad

state. To do this, each component is modeled in Maude and aspects of ev-

ery component’s internal state are included. Messages are the means for the

browser’s internal state to change.

Our application of formal methods helped us find bugs in our initial im-

plementation. By model-checking our address bar model, we revealed a state

that violated our specification of one address-bar visual invariant. The re-

sulting state was actually due to a bug in our implementation, as we had

not properly considered the impact of attackers dropping messages or a com-

promised component choosing to not send a particular message. Our model

gives an attacker complete control over the compromised component, includ-

ing the ability to selectively send some types of messages and not others. We

used the result to fix our access control implementation, and we updated our

model accordingly.

In the interest of space we have not included the entire Maude model. In

the following sections we highlight parts of our model that we use to model-

check same-origin and visual invariants. We have not specified all browser

invariants in our model, as this is a first step in our venture into formally

verifying an entire web browser.
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< UI-ID : Frame | addrBar: URL, ... >

imsg(count, src, dst, IDENTIFIER, content)

< ... > ...

Figure 6.3: OP message specification in Maude. This figure shows the mes-
sage specification in Maude. The first section of the specification is a class-like
structure, starting with < and ending in >. UI-ID is the instance identifier of
the type, Frame is the type, and after the pipe are the members of the type.
The next line begins with imsg and is the constructor for the message type.
The constructor takes the elements in parentheses and creates an object of
a specific type. The imsg constructor creates an object of type Message.

6.3.2 Modeling the OP browser

Component-based systems can be modeled in Maude as multi-sets of enti-

ties, loosely coupled by a suitable communication mechanism. For OP, the

entities are browser components, each with a unique identity, and the com-

munication mechanism is the message-passing API. In the Maude version of

our OP implementation, the states of OP are represented by symbolic expres-

sions, and the state transitions are specified by rewrite rules describing the

components’ communication with each other and the state transformation.

In this section we discuss our model for message passing and processing, user

actions, and how to include browser compromise into this model.

Communication between components in OP is done through the message-

passing interface, which is the communication mechanism modeled in Maude.

The messages are expressed as entities in the multi-set of components. The

message specification in Maude is shown in Figure 6.3. The messages are

tagged with a count to make sure they are processed in the right order.

Message ordering is preserved by the browser kernel, and in order to have

ordering in the multi-set representation in Maude, a count attribute is in-

troduced. A simple example illustrating our model of the message-passing

interface and a corresponding state change is shown in Figure 6.4. This rule

is responsible for updating the browser state, including the address bar of

the user interface.

The browser state as a whole is represented by the objects corresponding

to each of the components. This means that Maude represents a state as a

grouping of the UI, network, plugin, and other subsystem states. Figure 6.4
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< UI-ID : Frame | addrBar : URL, ... >

< MSG-ID : MsgCount | msg-to-process : N, msg-to-send : M >

imsg(N, webAppId, UI-ID, MSG-SET-LOCATION-BAR, new-URL)

=>

< UI-ID : Frame | addrBar : new-URL, ... >

< MSG-ID : MsgCount | msg-to-process : s(N), msg-to-send : M >

Figure 6.4: The Maude rule corresponding to the state change in OP. This
figure shows the Maude rule used to describe the state change due to a SET-
LOCATION-BAR message being received. Notation here is similar to that
of Figure 6.3. The first three lines are the current state and creation of the
message to be processed. The remaining lines represent the state after the
state change. The full browser state includes other components besides the
UI and message queue.

shows an action that sets the location bar in the UI. The first three lines of

Figure 6.4 describe the current browser state and include a message called

MSG-SET-LOCATION-BAR using the imsg constructor. The browser state

is rewritten, including in the UI a new address in the address bar (shown

by new-URL), and the results of the rewrite are the last two lines of the

figure. Rewrite rules such as these cause the Maude model to change state.

Model-checking through search locates possible states that can occur as a

result of these rules and satisfy an additional pattern.

Modeling user actions We also model the user actions in the browser

system, such as clicking the “GO” button to request a new web page. The

Maude model of the UI is very similar to the Java source code we wrote to

implement the UI in the OP web browser. The Maude rule describing the

message generation as a result of the “GO” button being clicked is listed

in Figure 6.5. This Maude rule is especially descriptive of the original Java

source; as we can see, the message created has the source set to UI-ID, a

destination of KERNEL-ID, the message type of MSG-NEW-URL, and the

URL that is the content of the message. This is precisely the same set of

actions as in the Java code that implements the sending of the NEW-URL

message. The first two lines of Figure 6.5 are the current UI and message

queue state, plus the user action labeled “GO.” The three lines following the

=> marker are the new browser state, which include a new message being
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< UI-ID : Frame | addrBar: URL, ... > GO

< MSG-ID : MsgCount | msg-to-process : N, msg-to-send : M >

=>

< UI-ID : Frame | addrBar : URL, ... >

imsg(M, UI-ID, KERNEL-ID, MSG-NEW-URL, URL)

< MSG-ID : MsgCount | msg-to-process : N, msg-to-send : s(M) >

Figure 6.5: Maude expression for the “GO” action. This figure shows how
to use Maude to describe the “GO” UI button that causes a message to be
sent. The first line represents the portion of the browser state for the Frame
and the user action being performed, which in turn causes produces a new
Frame state and the message with type set to MSG-NEW-URL.

generated by the imsg constructor.

Modeling browser component compromise Our model also includes

potential attack paths. As an example of a component-level compromise,

the attacker could take control of a web page subsystem instance and, using

the message API, force the compromised component to send incorrect URL

information to the UI component, resulting in address bar spoofing. Setting

the address bar to a different location than the page contents is primarily

useful for phishing attacks. Using access controls, we prevent such attacks

from being successful. In Maude, we express the compromise of a component

as additional rules that generate messages and trigger message passing and

processing like ordinary rules.

6.3.3 Model-checking address bar invariants

Cases that allow the address bar in the browser to mismatch the page content

were examined for Internet Explorer in work by Chen et al. [24]. They

searched for violations of invariants specified for GUI elements in Internet

Explorer under normal operation. We are able to verify a similar result for

the OP browser using our formal model of the message-passing interface and

our security policy. The key difference in our approach is that our proof

holds even in the presence of a fully compromised web page instance.

To model-check and find cases of address bar spoofing, we must define a

good browser state. Once we have an expression for good browser states, we
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< UI-ID : Frame | AddrBar : S1:String, NavWebApp : WebApp1:Int,...>

< WebApp2:Int : WebApp | Content : S2:String, ... >

such that (WebApp1:Int == WebApp2:Int) /\ (S1:String =/= S2:String)

Figure 6.6: Maude expression for checking address bar spoofing. This figure
shows a Maude expression describing the condition checked for address bar
spoofing. This condition is used as a test for bad browser states. The first line
is the current state of the browser, specifying the UI and ID for an instance
of the web page subsystem. The last line is the comparison, which checks
that the URLs associated with the address bar and web page subsystem are
different, indicating a state where the address bar is spoofed.

can use Maude to search for the bad ones. We define a good state as a state

where the content of the currently navigated web page matches with the URL

shown in the address bar. The Maude expression describing spoofing is shown

in Figure 6.6. When we use the model-checking search tool to search from an

initial state, consisting of all the components of OP and some user actions,

the results show that there is no logic error leading to the address bar spoofing

scenarios. We also make sure that the address bar cannot be spoofed once the

web page subsystem is compromised, showing that the access control logic

can defend the browser against possible attack sequences. This result verifies

that, if the browser kernel and UI are trusted, no sequence of messages can

violate our address bar invariant, even if an attacker compromises a web page

instance. This result does not provide guarantees for the display of the web

page content. For example, a compromised rendering engine could display

incorrect content. Our model-checking gives us high assurance that such an

exploit will not be able to affect the address bar or other UI elements and

will remain contained inside the rendering engine.

6.3.4 Model-checking the same-origin policy

Our implementation of the same-origin policy for the OP web browser con-

trols access to all browser components. We use model-checking to verify that

the same-origin policy cannot be violated by a single component being com-

promised. Although our model focuses on interactions with plugins, other

components with similar interactive capabilities can benefit from the result.

We model a compromised web page subsystem and plugin, and verify that
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the access control implemented in the browser kernel enforces the same-origin

policy specified as invariants in our model.

Plugins and JavaScript are able to interact with each other through the

scriptable plugin extension to the Netscape Plugin API, and we support such

interaction in OP. Enforcing the same-origin policy for these components is

done in the same manner as our other security policies for plugins in the

browser kernel. The simple message API keeps the state space small enough

for model-checking to be tractable when considering all the possible actions

by different browser components. We have proved a few different invariants.

For example, we have proved that a plugin from one domain cannot send a

message to a plugin (or web page instance) from another domain, and vice

versa.

Introducing binary compatibility for the Netscape Plugin API would in-

crease the size of the message API for plugins, although our access controls

still remain in the browser kernel. Once OP is binary compatible with the

Netscape Plugin API, we should be able to adapt the model and verify that

the same-origin policy is upheld with the added complexity.

6.4 Can we verify IBOS TCB?

We have already shown that the architecture of IBOS can reduce drastically

the TCB for browsing system. While IBOS already presents a huge step

towards secure web browsing, we argue that the security guarantee can be

further improved if the TCB of IBOS can be formally verified.

In seL4 [57], the authors develop the whole framework for converting formal

specification to C implementation and guarantee that there is no program-

ming error such as divided by zero and null pointer dereference in the OS

kernel. It is not feasible or reasonable for us to develop a similar framework

to verify the IBOS TCB, as the one for seL4 took more than 20 person years.

While in this section, we examine the feasibility of verifying IBOS TCB,

hoping to spur future work.

In IBOS, our goal is to minimize the TCB for web browsers and to simplify

browser-based systems. To quantitatively evaluate our effort, we count the

LOC in the IBOS TCB and compare it against the TCBs for Firefox and

ChromeOS. IBOS supports fewer hardware architectures, platforms, device
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System LOC

IBOS 42,044
IBOS Kernel 8,905

L4Ka::Pistachio 33,139

Firefox on Linux > 5,684,639
Firefox 3.5 2,171,267

GTK+ 2.18 489,502

glibc 2.11 740,314

X.Org 7.5 653,276

Linux kernel 2.6.31 1,630,280

ChromeOS > 4,407,066
Chrome browser kernel 4.1.249 714,348

GTK+ 2.18 489,502

glibc 2.11 740,314

ChromeOS kernel & services (May 2010) 2,462,902

Table 6.1: LOC of TCBs for IBOS, Firefox, and ChromeOS. This table shows
the estimation of LOC of TCBs for IBOS, Firefox on Linux, and ChromeOS.
LOC counts are also shown for some major components that are included in
the TCB.

drivers and features, such as browser extensions, than Firefox running on

Linux and ChromeOS. For a fair comparison, we only count source code that

is used for running above Linux and on the X86-64 platform. Also, we omit

all device drivers from our counts except for the drivers we implement in

IBOS.

Table 6.1 shows the result of LOC counts in the TCBs for these three

systems, measured by SLOCCount [106]. For Firefox and ChromeOS, our

counts are conservative because we only count the major components that

make up the TCB for each system – there are likely more components that

are also in the TCBs for these systems. IBOS TCB has only around 42K

LOC, which is about two orders of magnitude smaller than the other two

systems. And we argue that, since most of the components of IBOS are out

of its TCB, the TCB size would not increase significantly even if we add more

features to the system. With a proper framework like the one in seL4 [57],

it is feasible to formally verify the entire IBOS TCB.

Once the IBOS TCB is verified, we can use it as the foundation to provide

high-level security assurance of the browsing system, i.e., prove the desired

security invariants in the whole system. Most of the security invariants pre-
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sented in Chapter 3 could be verified in a similar way as we did for the OP

web browser. Here, we discuss two of them as examples.

• UI invariant. The user interface of a browse sometimes also present

security information of a web app. For example, as we discussed before,

the browser should make sure that the address bar accurately displays

the URL of the top-level frame. In IBOS, we also include the feature

of display isolation between web page instances, browse chrome, and

kernel display area. By proving this feature, we can provide high as-

surance that no browser-level component can interfere the display of

another in the system.

• Storage invariant. IBOS includes the use of encryption of storage con-

tent, eliminating the threat from an untrusted file system. Neverthe-

less, we still need to verify the IBOS kernel provides enough checks

to ensure that the cookies can only be sent to the right place. For

example, a web page instance should only be able to access cookies

within the same domain (or within the same subdomain). By verifying

this, IBOS could guarantee that a compromised web app cannot steal

other’s cookies.

6.5 Summary

In this chapter, we presented some initial attempts of using formal methods to

improve the security of web browsing. First, we showed that the microkernel-

like architecture of the secure web browser we proposed enables application of

formal verification. We showed that it is feasible to model different browser

components as state machines, and express messages by means of rules that

drive state transitions. By using Maude’s model-checking capability, we were

able to verify address bar dispaly consistency and part of the same-origin

policy.

Secondly, we investigated the possibility of verifying IBOS TCB. Gener-

ally, with a formally proved IBOS TCB, we can achieve even higher security

guarantee of the system. We also discussed some of the high-level security

properties we could validate once we have the verified IBOS TCB.
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The Web is growing in features and complexity, making it hard to ensure

the trustworthiness of web-based systems. Web browsers have become the de

facto operating system for hosting web-based applications, making it vital

and pressing to ensure their security. Building the formal foundation of

browser systems is rewarding, yet not an easy task. Of course, our model and

discussion do not capture the entire web platform and its issues. However,

we believe our study takes an important step in this direction.
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CHAPTER 7

EVALUATION

This chapter describes our evaluation of IBOS, OP2 and Zan. In our eval-

uation, we analyze the security of IBOS and OP2 by looking at recent bugs

in comparable systems and counting vulnerabilities that IBOS and OP2 are

susceptible to. We also revisit the example attacks we discussed in the be-

ginning of Chapter 3, and we measure the performance of those systems.

7.1 Security analysis

This section describes our security analysis. In our evaluation, we analyze the

architectural impact of IBOS and OP2 for defending known vulnerabilities.

we also test the efficacy of the defense mechanisms of Zan.

7.1.1 Browser vulnerabilities

To evaluate security improvements that OP2 and IBOS make for browsers

themselves, we compared how well OP2 and IBOS could contain or prevent

vulnerabilities found in Google’s Chrome browser. For this evaluation, we ob-

tained a list of 295 publicly visible bugs with the “security” label in Chrome’s

bug tracker. Out of the 295 bugs, 42 cause denial-of-service such as a sim-

ple crash or 100% CPU utilization. IBOS does not address denial-of-service

or resource management currently. An additional 78 are either invalid, du-

plicate, not actually security issues, or related to features that IBOS does

not have, such as browser extensions. For the remaining 175 bugs, we ex-

amined each of them to the best of our knowledge and classified them into

the following seven categories and compared how Chrome, OP2, and IBOS

handle those cases. Generally speaking, while OP2 has finer-grain modular-

ization, OP2 and Chrome share a very similar design. From the architectural
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prospective, they have identical ability to contain attacks in most cases. In

the following paragraphs, when we show Chrome is able to contain a type of

vulnerability, it indicates OP2 could handle the case as well unless explicitly

stated otherwise.

Memory exploitation: an attacker could use a memory corruption bug to

deploy a remote code execution attack. For Chrome, if the bug is in its

rendering engine, Chrome contains the attack. However, bugs in the browser

kernel give attackers access to the entire browser. For IBOS, bugs in either

the rendering engine or other service components are contained as they are

all out of the TCB.

XSS : browsers rely on careful sanitization and correct processing of dif-

ferent encodings to prevent XSS attacks. For both Chrome and IBOS, it is

infeasible to eliminate XSS attacks, but they both contain the attacks in the

affected web apps.

SOP circumvention: Chrome runs contents in frames from different ori-

gins in a single address space and uses scattered “if” and “else” statements

to enforce the same-origin policy. This logic can be sometime subverted.

In IBOS, we run iframes in different web page instances to provide strong

isolation and check cross-origin access in the IBOS kernel.

Sandbox bypassing : Chrome uses sandboxing techniques, such as SELinux,

to limit the rendering engine’s authority. However, rule-based sandboxing

is complex and can be bypassed in some scenarios. In IBOS, we designed

browser abstractions to restrict the authority of each subsystem, which are

immune to this kind of problem naturally.

Interface spoofing : browsers are sometime vulnerable to visual attacks

in which a malicious website can use complex HTTP redirection or even

replicate the “look and feel” of victim websites to deploy phishing. Chrome

uses a blacklist-based filter to warn users of malicious websites. In IBOS, the

IBOS kernel separates the display of different web page instances and uses

the labels of web page instances to display the correct URL in the top of the

screen to give the user a visual cue of which website he or she is visiting.

UI design flaw : some security concerns arise because of careless imple-

mentation, such as showing users’ passwords in plain text. Both Chrome

and IBOS are vulnerable to this type of problem.

Misc: some vulnerabilities could not easily be classified and mostly have

low security severity. This is the category for those remaining bugs.
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In Table 7.1, we show the detailed results of the analysis of the 175 vul-

nerabilities, broken down by the classifications above. We examined each of

them to determine whether Chrome contains the threats in the affected com-

ponents, and whether IBOS contains or eliminates the attacks. The table

shows IBOS successfully protects users from 135 of the 175 vulnerabilities

(77%).

The largest portion of bugs are browser implementation flaws that cause

memory corruption and allow remote code execution. Chrome does a fairly

good job containing most of them when they are in the rendering engine.

However, Chrome is unable to contain exploits in the browser kernel. A good

example is a bug in the HTTP chunked encoding module in the browser ker-

nel, which opens the possibility for a remote attacker to inject code. In IBOS,

the TCP/IP and HTTP stack is pushed out of the TCB, and is replicated

and isolated according to browser security policies. Thus, IBOS is able to

contain this bug. The three memory corruption bugs IBOS could not con-

tain were from bugs in Chrome’s message passing system. Because the IBOS

message passing logic resides within our TCB, we counted these bugs as bugs

that IBOS would have missed.

7.1.2 OS and library vulnerabilities

To evaluate the security impact of IBOS’s reduced TCB, we obtained a list of

74 vulnerabilities found in the Linux kernel, X Server, GTK+, and glibc this

year so far (as of Sep. 18, 2010) [1] to see how the IBOS architecture handles

them. Out of the 74 vulnerabilities, 20 are related to unsupported hardware

architectures and devices, and 26 cause denial-of-service, which is out-of-

scope for this dissertation. For the remaining 28, we classify them based on

the subsystem the vulnerability lies in to determine if IBOS is susceptible to

these vulnerabilities.

Table 7.2 shows IBOS is able to prevent 27 of 28 vulnerabilities (96%). The

only vulnerability we miss is a memory corruption vulnerability in the e1000

Ethernet driver. Normally IBOS is not susceptible to bugs in device drivers,

but this particular bug resulted from the driver not accounting properly for

Ethernet frames larger than 1500 bytes, and this type of logic is what our

NIC verification state machine uses, so we counted this bug against IBOS.
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Affected Component Num. Prevented

Linux kernel overall 21 20 (95%)
File system 12 12 (100%)
Network stack 5 5 (100%)
Other 4 3 (75%)

X Server 2 2 (100%)
GTK+ & glibc 5 5 (100%)
Overall 28 27 (96 %)

Table 7.2: OS and library vulnerabilities. This table shows the number of
vulnerabilities that IBOS prevents.

7.1.3 IBOS motivation revisited

In the beginning of Chapter 3, we listed some examples of attacks that an

attacker can use to still cause damage to modern secure web browsers by

exploiting code in their TCB. We revisit these examples again to argue that

IBOS can prevent them.

A compromised Ethernet driver cannot access the DMA buffers used by

the device. Even if an attacker exploits the Ethernet driver, he or she still

cannot tamper with network packets because the driver does not have access

to DMA buffers and because the IBOS kernel validates all transmit and

receive buffers that the driver sets.

A compromised storage module has little impact on data confidentiality

and integrity. The IBOS kernel encrypts all data with secret keys that only

the IBOS kernel has access to. Stored objects are tagged with a hash and

origin information so that the IBOS kernel is able to detect tampered data.

The only thing a compromised storage module can do is delete objects.

A compromised network stack is constrained as well. In IBOS, every net-

work process runs a complete network stack. A compromised network process

cannot send users’ data to a third party host as the IBOS kernel ensures it

can only communicate with the expected host. Network processes do have

the ability to modify or replay HTTP requests, but the web server might

have a mechanism to defend against replay attacks.

A Compromised window manager cannot affect other subsystems in IBOS.

In IBOS, the role of window manager is simplified to only draw the browser

chrome. It can change some potentially sensitive information, such web page

titles. However, the IBOS kernel displays the URL of the current tab in the
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Efficacy Coverage Comp.

Cookie protection 1/1 scenario 31/39 sites n/a
Frame defense 6/6 scenarios 34/34 sites 114/116 sites

Auto JSON.parse() 3/3 attacks 12/12 sites 116/116 sites
DOM-based XSS prev. 10/10 attacks 14/14 sites 116/116 sites

Table 7.3: Defense efficacy, coverage, and compatibility of Zan. This table
shows how the three Zan algorithms perform when tested on top websites.

kernel display area, providing users with some visual cues as to the prove-

nance of the displayed web content.

7.1.4 Efficacy of Zan

In this section we simulate the attacks that we designed Zan to prevent, and

show the protection result in the second column of Table 7.3. Overall, our

algorithms improve the security in at least one way for 57 different sites in

our top websites set.

Cookie protection. To evaluate how effectively our algorithm detects cre-

dential cookies, we apply it to 33 websites that have login cookies but have

not incorporated HttpOnly flags. To simulate an attack we log in to each of

the websites. Then, we delete all of the cookies that Zan marks as HttpOnly.

After erasing the HttpOnly cookies we attempt to continue our login session.

If the website kicks us back to the login page we consider this a successful

defense because it implies that at least one of the cookies Zan identified was

needed for authentication at the website. Thus, if an attacker had stolen

the cookies via JavaScript then the set of cookies they would have access to

would not allow authenticated requests.

For 31 of the 33 websites that we tested, Zan ended the session after we

deleted the HttpOnly cookies. The two websites that were able to continue

the session despite the deleted cookies were 4share.com and imageshack.us.

For these sites Zan identified cookies, but we were able to continue interact-

ing with the site as an authenticated user despite our deleted cookies. Inter-

estingly, the cookies we discarded had names “PHPSESSION” and “JSES-

SION”, but our sessions persisted despite their removal.
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Frame defense. To test our frame defense we try to frame a website that

Zan injects X-Frame-Options into and we confirm that Zan prevents fram-

ing. We verify that the five attack scenarios that are applicable to We-

bKit [82] can be mitigated in Zan because Zan does not rely on the correct

execution of frame busting code.

Automatic JSON.parse(). To test our JSON parsing defense we manu-

ally craft three attacks that simulate the script injection vulnerabilities we

describe in Section 5.5. In all of our tests Zan detected the JSON text and

ran it through the JSON.parse() parser, which correctly failed to parse the

text.

DOM-based XSS prevention. We have tested our protection mecha-

nism against publicly disclosed attacks and examples of DOM-based XSS

attacks. We test against five documented XSS attacks disclosed for popular

services. We also generate five synthetic attacks based on examples used to

demonstrate DOM-based XSS attacks. For both sets of attacks our policy

successfully prohibits the execution of the injected script.

7.1.5 Zan’s coverage and compatibility impact

In this section we evaluate websites where the additional protection provided

by Zan would improve security. Based on manual analysis of top websites

we identify websites that would benefit from the protections each of our al-

gorithms provide. Then, we visit these websites with Zan and measure how

many of them Zan was able to detect and apply the appropriate defenses.

For our tests we visit the site and stay for five seconds after the page finishes

loading to give the XMLHttpRequests time to use JSON objects. we also

analyze cases where Zan changes the behavior of a website by enabling se-

curity features. We show the coverage and compatibility impact in the third

and fourth column of Table 7.3 respectively.

Cookie protection. To test the coverage of our HttpOnly algorithm, we

logged into websites to test Zan’s ability to set HttpOnly cookies. As we

describe in Section 5.3, we train our algorithm on the 54 websites that use
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HttpOnly cookies. After this training, we applied our algorithm to the re-

maining 39 websites that we had login credentials for.

Zan was able to apply HttpOnly to 33 of websites automatically. There

are 6 websites for which our algorithm could not detect credential cook-

ies, mostly due to either low entropy or short value and irregular cookie

names. Craigslist.com had credential cookies using seemingly common

Login name, but this name was infrequent in our data set, so we did not

detect this cookie. Of the 33 websites that Zan did set HttpOnly cookies

for, the algorithm identified authentication cookies for 31 of them, as we

described in Section 7.1.4.

The fundamental way of evaluating the usability impact of our cookie

protection algorithm is to examine if one cookie that is designed to use in

JavaScript has been incorrectly tagged with HttpOnly by Zan. However,

without full knowledge of the usage of each cookie, it is infeasible to carry out

a complete quantitative analysis. Instead, to have a close estimation, we opt

to visit the top 10 websites and use their representative services. Our tasks

include, but are not limited to, doing a Web search, sending and receiving

email, editing a Wikipedia document, sending messages to Facebook friends,

posting on Twitter, customizing Yahoo! homepage, publishing a blog, and

commenting a popular video in YouTube. In all of these user interactive

experiments, we performed each task without any problems, indicating that

Zan does not affect popular websites. Moreover, the whole algorithm can be

tweaked to be more aggressive or conservative.

Frame defense. Our frame defense and automatic JSON.parse() algo-

rithms were able to cover all of the potential opportunities to apply stronger

defenses. For our frame defense we visited the 34 websites in our set of top

websites that have frame busting code, and Zan applied X-Frame-Options

to all 34 sites. Interestingly all of the websites in our test that do use

X-Frame-Options also include frame busting code. Thus, had an HTTP

proxy stripped the X-Frame-Options from the HTTP response header then

Zan would still protect the site.

Fundamentally the X-Frame-Options mechanism is different from frame

busting. X-Frame-Options prevents a cross-origin frame from being loaded

whereas frame busting is controlled by the programmer and usually (but

not always) results in navigation of the top-level frame. Thus, the effects of
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X-Frame-Options are going to be different than if the frame busting code ran

for all of the websites in our experiments. However, the X-Frame-Options

option provides a more robust mechanism for preventing framing, which is

fundamentally what frame busting is trying to do.

To test our frame defense we ran two experiments. First, we visited all of

the top websites in our data set and we measured Zan’s effects on any of the

IFRAMEs included in these 116 sites. Then, we visited the 82 websites in our

top websites sets that did not have frame busting code and we framed them

to see if Zan applied X-Frame-Options incorrectly.

Zan maintains compatibility with all of the IFRAMEs included in our top

websites and 80 of the 82 websites that do not include frame busting code.

The first website where Zan injects a X-Frame-Options incorrectly is en.

wikipedia.org/Main_page. Wikipedia does contain a frame busting code,

but this code is protected by an if statement. This if statement enables

Wikipedia to frame bust its login page, but not the main page. Since we use

string pattern matching instead of relying on complex control flow analysis in

Zan, we are unable to eliminate this false positive. The other case is similarly

caused by a if statement in cnn.com. CNN maintains a blacklist of websites

and only executes its frame busting code when it is framed in one of them.

For the same reason as in Wikipedia, Zan applies the X-Frame-Options

defense even though the domain we use for the top-level frame is not in the

blacklist.

Automatic JSON.parse(). For our automatic JSON.parse() algorithm

we visited the 12 websites in our set of top websites that deserialize JSON

text using eval() and Zan ran all 48 JSON objects on these sites through

the JSON.parse() parser correctly.

For our experiments, Zan’s automatic use of the JSON.parse() function

did not affect any of the 116 websites we visited. In other words, all eval

strings were processed identically in Zan when compared to processing them

with eval(). However, we recognize that we did have to add to the grammar

of our JSON.parse() parser a little bit to maintain this compatibility and it

is possible that websites outside of our data set could induce false positives,

but our evidence suggests that our techniques would be robust.
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DOM-based XSS prevention. The mechanism that prevents DOM-

based attacks does not cause any compatibility problems. We test it on

the top 116 websites, and there is no case that our system prevent legitimate

JavaScript from being executed. Our policy is also configured to generate

warnings when tainted data is passed to the HTML parser and could result

in a DOM-based XSS attack. We found that there are fourteen websites

using input from unsafe sources, and Zan is able to generate warnings on all

of them. Thirteen of them use JavaScript escape() method to sanitize the

text. While for remaining one we were able to construct an attack to exploit

the vulnerability found. This vulnerability is in a popular sports website and

can be used to inject arbitrary JavaScript into the page. After generating a

sample attack we confirmed that our policy prevents the attack, and reported

the problem to its administrator.

7.2 Performance

To evaluate the performance implication of the three systems we build, we

choose to measure their browsing experiences and compare with other web

browsers. We use page load latency to represent browsing experience. Page

load latency is defined as the elapsed time between initial URL request and

the DOM onload event.

All experiments were carried out on a 2.33GHz Intel Core 2 Quad CPU

Q8200 with 4GB of memory, a 320GB 7200RPM Seagate ST3320613 SATA

hard drive and an Intel PRO/1000 NIC connected to 1000Mbps Ethernet.

However, experiments for difference systems were conducted at different time,

using different versions of Linux, Qt, and WebKit, which means the perfor-

mance for the same website could vary. And only for OP2, we turned on disk

cache for HTTP data, resulting in overall faster page loading.

7.2.1 IBOS performance

To evaluate the performance implication of IBOS’s architecture, we compare

its browsing experience to other web browsers running in Linux. For Linux,

we used Ubuntu 9.10 with kernel version 2.6.31-16-generic (x86-64).

We compare IBOS with Firefox 3.5.9, Chrome for Linux 4.1.249. We also
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Figure 7.1: Page load latencies for IBOS and other web browsers. All laten-
cies are shown in milliseconds.

compare it with OP2. Since OP2 uses almost identical design of browser com-

ponents except for just one single network process, we could focus on the per-

formance impact of our IBOS kernel architecture. In IBOS, we statically al-

locate processors for subsystems as follows: the kernel and device drivers run

on CPU0, network processes run on CPU1, web page instances run on CPU2,

and all other components run on CPU3. IBOS, OP2, and Chrome all use

a same version of WebKit from February 2010 with just-in-time JavaScript

compilation and HTTP pipelining enabled. For the WebKit-based browsers,

we instrument them to measure the time in between the initial URL request

and the DOM onload event. For Firefox, we use an extension that measures

these same events. To reduce noise introduced by our network connection,

we load each web site using a fresh web page/browser instance with an empty

cache 15 times and report the average of the five shortest page load latency

times.

In Figure 7.1, we present the page load latency times for six popular web-

sites and show the standard deviations with the error bars. Overall, Chrome

has the shortest page load latencies due to its effective optimization tech-

niques. For maps.google.com, IBOS, OP2, and Chrome out-perform Fire-
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fox, possibly due to optimization in the WebKit engine for this particular site.

For www.bing.com, sfbay.craigslist.org and cs.illinois.edu, IBOS,

OP2, and Firefox show roughly the same results. IBOS has the fastest load-

ing time for craigslist. Craigslist is a simple web site with few HTTP

requests and with a large number of HTML elements. We hypothesize that

the small performance improvement is due to the simplified IBOS software

stack.

Both en.wikipedia.org/wiki/Main_Page and www.facebook.com have

more HTTP requests than any of the other sites, and we observe slower

page load latencies for IBOS than for other browsers. For these experiments

IBOS performs slower than OP2. Because we use the IBOS components

in Linux, we believe that this performance difference occurs from overhead

in the IBOS kernel. To test this hypothesis, we ran a number of micro

benchmarks on the two systems and we believe that the overhead is due to

contention for spinlocks in the L4 IPC implementation. The net effect of this

contention is that heavy use of network processes requires heavy use of IPC,

which adds latency to all IPC messages and slows down the overall system.

However, the OP2 results for these experiments show that this slow down is

not fundamental and can be fixed with a more mature kernel implementation.

Overall, the page load latency experiments show that even with a prototype

implementation of IBOS, our architecture will not slow down the browsing

speed significantly for the web sites we tested.

7.2.2 OP2 performance

To measure the latency introduced by OP2, we compare the load times of

a few common pages with a simple WebKit-based browser – QtLauncher.

QtLauncher runs as a single process, and uses exactly the same Qt Framework

(4.6) and WebKit engine (r54749). To some extent, its performance could

serve as the upbound for OP2.

Figure 7.2 shows the results of five different OP2 configurations in compar-

ison to QtLauncher. Each website is loaded six times, and the loading times

are averaged. In all tests we use a warmed up browser that has previously

loaded the page to warm any caches. We have performed three optimizations

to improve the performance of OP2 and evaluate each optimization as well
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Figure 7.2: OP2 performance. This figure shows the page load latencies for
a six popular pages using OP2 and QtLauncher. From the left bar to the
right shows OP2 starting without any optimizations, and shows the effects of
adding each optimization cumulatively, where the OP2 with frame isolation
bar represents a fully-optimized OP2 browser. All tests have primed disk
cache for HTTP data.

as the effects of frame isolation. Figure 7.2 shows how each optimization

improves the overall OP2 performance.

Process pre-creation. Our first optimization is designed to eliminate

the cost of creating new processes by creating web page instances during idle

times in anticipation of future use. Currently we keep a web page instance

pool containing a single web page instance. As shown by the second bar from

the left in Figure 7.2, OP2 with only the process pre-creation optimization

performs slower than QtLauncher in every test.

Parallelizing window manger operations. The second optimization

we implemented performs the window reparenting in parallel with the page

downloading and rendering. Window reparenting under X11 is costly, and

this optimization provides the largest performance improvement. The third

bar from the left in Figure 7.2 shows the impact of this optimization combined

with process pre-creation. On average, parallelizing the window manager

operations improves page load times by approximately a half second.
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Process caching. Our last optimization reuses old web page instances if

the same URL is loaded multiple times, limiting the costs of initializing a web

page instance with the same content. This approach also enables using the

in-memory object cache for OP2. Process caching uses a least recently used

cache of web page instances that can be reused when a previously seen URL

is loaded. The default cache configuration retains ten web page instances in

the cache.

Combined with the other two optimizations, process caching improves the

performance of OP2 to be as fast or faster than QtLauncher in all of our

tests, as shown by the fourth bar from the left in Figure 7.2.

Frame Isolation. In Section 4.2.5 we discussed the design of OP2 that

allows for the browser to automatically isolate frames. The fourth and fifth

bars from the left in Figure 7.2 show a comparison of OP2 without and

with frame isolation. For most of the pages tested we see little difference

in the page load times. The result is a little different from an early exper-

iment of OP2 [47], where OP2 shows greater performance improvement for

nytimes.com. We believe that OP2 isolates cross-origin frames in separate

web page instances allowing the use of additional CPUs to render frames

in parallel. However, browser is complex and its performance is affected by

various sources, such as web server efficiency, web page content, network la-

tency, and rendering engine algorithm. It could be some change in one of

those factors leading to the different result. For example, the new WebKit

engine could lower the priority of IFRAME loading, delaying the loading of

frames until after onload event. Nevertheless, superior performance is not

the goal of this dissertation, and we would defer further investigation of this

topic into future work.

As shown in Figure 7.2, OP2 without optimizations are always slower than

QtLauncher, sometimes by more than 10x; however, with all optimizations

enabled, OP2 is as fast as QtLauncher. Interestingly, by decomposing the

browser into separate subsystems that run in different OS processes and

enforcing additional security policies, we often add latency. For example,

sending an HTTP request in QtLauncher and OP2 both require setting up

HTTP headers, attaching appropriate cookies, connecting to the network,

and sending the request. However, in OP2 the web page instance must also

send an IPC message, through the browser kernel, to the network subsystem,

adding latency directly to roughly equivalent functionality.
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Running reasonable amount of processes for subsystems, however, could

expose parallelism that is absent in current versions of WebKit, potentially

enabling multicore systems to improve performance. For example, OP2 will

overlap the handling of HTTP requests with the downloading, parsing, ren-

dering, and painting of WebKit. We believe that this trade off of increased

latency for increased parallelism is why OP2 is able to run as fast as Qt-

Launcher on our multicore system. We recognize that this observation might

indicate that WebKit could be made faster by introducing more parallelism,

which could expose the latency added by OP2, but further study of this

performance issue is beyond the scope of this dissertation.

Overall the results in Figure 7.2 indicate that with our optimizations OP2

does not introduce latency that would be detrimental to a user using OP2.

7.2.3 Zan performance

To evaluate the performance implication of the three defense techniques used

in Zan, we compare its browsing experience to the unmodified OP2 web

browser, both using Qt Framework 4.6 and WebKit r54749. For Linux, we

used Ubuntu 10.04 with the x86-64 kernel.

We compare Zan with the unmodified OP2 web browser. In general,

there is no noticeable performance impact during our daily use of OP2 when

enabling Zan. Nevertheless, we measured the page load latency times on six

web sites: google.com, facebook.com, yahoo.com, live.com, baidu.com,

and youtube.com. We visited the front page for each of these sites six times,

and present the average in Figure 7.3. We show that Zan did not add any

measurable amount of overhead.

7.3 Summary

Security evaluation is hard, especially for newly proposed systems, as there

is no standard benchmark available. Typical methods include: 1) automated

testing or manual review of the code. But bugs always exist in spite of the

effort spent; 2) formal verification of the implemention. But this approach

itself is under research and there is no mature framework for commodity

systems; 3) deploying into practice and drawing conclusions from real world
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Figure 7.3: Performance impact of Zan. This figure shows the page load
latencies for unmodified OP2 web browser and Zan. All latencies are shown
in milliseconds.

experiences. This approach gives high confidence but is infeasible for a re-

search project.

Instead, to evaluate the security of the new systems we build, we examine

the features of existing vulnerabilities of similar systems. We then quantita-

tively analyze the architectural impact of our systems to each vulnerability:

1) whether it is structurally impossible; 2) whether it is addressed by a newly

introduced mechanism 3) whether it still affects the new design?

Overall, we show that, by following the six principles we proposed in Chap-

ter 1, we are able to build systems that could withstand most of the attacks

we target to prevent, still maintain reasonable compatibility to existing web

standards, and introduce little overhead to the overall browsing performance.
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CHAPTER 8

FUTURE WORK

Though providing a great step towards secure web browsing, the systems we

described in previous chapters are not yet the final solutions for the Web.

However, we believe that it is feasible to solve some remaining issues by

following the six principles we summarize in this dissertation. In this chapter,

we discuss some of the future research directions.

8.1 Safe extensibility

In Chapter 3, we described the security invariants we introduced in IBOS.

Security invariants are used as the assertions on all interactions between

subsystems to check basic security properties. One key argument to security

invariants is that we can extract security relevant information from messages

automatically to enforce security policies. By doing so, we are able to provide

high assurance of the overall system without having to understand how each

individual subsystem is implemented.

The current approach of enforcing security invariants is not flexible. In

our prototype, all the messages passed between subsystems are formalized

according to a pre-defined format. To enable security invariants, we hard-

code extraction logic and security policies in the IBOS kernel. This inflexible

approach is sufficient as the first step for a research prototype, since we only

support a limit number of hardware devices and network protocols.

As discussed before, the Web is fast evolving. A browsing system has to

have the capability to adapt to this evolution. Meanwhile, to make IBOS as

practical system, we inevitably need to support for more devices and different

types of services. For example, we will have to support cameras, GPSes, and

different network protocols. We hope to have a mechanism to enable more

flexible security policies safely for these new features while avoiding including
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significantly more lines of code in the IBOS TCB.

To overcome the scalability problem, we propose a set of generic abstrac-

tions to support flexible security policies in IBOS. The idea is mainly moti-

vated by two previous projects – UDFs in Exokernel [56] and Proof-Carrying

Code [72]. Both approaches support untrusted extensions to operating sys-

tems without sacrificing safety.

Similarly, IBOS should provide a set of generic abstractions to enable: 1)

untrusted components to install mapping functions to allow automatically

extraction of security relevant information from messages; 2) administra-

tors or trusted web sites to install new security policies dynamically without

changing the IBOS kernel implementation.

While allowing those extensions to IBOS kernel, we also need to make

sure that the new logics are separated with the TCB of IBOS and would not

affect other parts in the systems. We hope that this set of abstractions allow

IBOS to accommodate the development of the Web and enable safe browser

extensibility (e.g., Native Client-like plugins [110]), while retaining a small

TCB.

8.2 Convergence of mobile apps and web apps

Recent years have witnessed a dramatic trend towards mobile computing

driven by increasingly powerful mobile devices, such as smartphones, tablets.

The Web also plays an important role in this shift. Though more capable than

ever before, mobile devices still have limited computation power compared

to their desktop counterparts. However, these mobile devices fit perfectly in

the scenario of accessing the numerous resources in the Web – a thin client.

Intuitively, the popularization of mobibe computing would also reciprocate

a favor, stimulating further development of the Web.

Two roads, however, diverge on these shrimpy screens. One is the path

to the web apps, the other leads to the native applications (or mobile apps).

While web apps possess a series of advantages, such as platform agnosticism,

free of installation and update, native support of sharing and collaboration,

and easy to develop, they do suffer from issues like requirement of Internet

access, subpar performance, limited access to hardware sensors (e.g., com-

pass, gyroscope), and responsiveness of user interface. In addressing these
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shortcomings of web apps, mobile apps come on the scene, serving as the

complement.

Nevertheless, there are no fundamental differences between web apps and

mobile apps. They often present the same information to the users despite of

running on top of different abstractions. For example, some popular websites

(e.g., google.com) publish mobile app versions only to facilitate the access

to them. Some other websites just encapsulate their web content in the

corresponding mobile apps, such as aa.com. And we also see from survey [33]

that mobile apps incur the same security and privacy concerns as web apps.

Based on the above observation, we argue that we should treat the security

of mobile apps in a similar way to web apps, i.e., we need to follow these six

principles to build secure mobile operating systems.

Before we could research further into the security of apps in mobile plat-

form, we need to answer a question – are the problems faced in mobile plat-

form exactly the same as in desktop? The trend of mobile computing enables

even more average users. Meanwhile, users are more likely to store sensitive

information in their phones, such as contacts, private photos, and financial

records. Moreover, mobile devices also expose new set of information that

is not presented in desktops, such as geolocation. Consequently, the answer

to the question should be “no”. Unfortunately, current mobile operating

systems, such as iOS and Android, are constructed just as the functionally

reduced desktop operating systems, providing little specific security consid-

eration. We hope future research could identify the problem, and propose

correct solutions to the security of mobile apps and web apps.

8.3 Browser performance

Web browsing should be fast, but currently it is slow, especially in mobile

platform. Modern computer systems have plenty of hardware to power fast

applications – they contain on the order of gigabytes of memory, are con-

nected to high-speed networks capable of sending and receiving megabytes

each second, and have multiple cores running in the gigahertz range. How-

ever, web browsing fail to make use of these luxury computing resources.

The need of speed has become even stronger as recent studies show ev-

idence of a positive correlation between the performance of web apps and
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business value. For example, Google and Microsoft reported that a 200ms

increase in page load latency times resulted in “strong negative impacts” and

that delays of under 0.5 seconds “impact business metrics” [84].

Several recent projects have been devoted to speeding up web brows-

ing. There are proposals for optimizing individual components [44], pipelin-

ing network transfers and computations between web servers and the

browser [54, 73], and pushing computation to web servers [68]. Although

these optimizations improve the performance of the web apps, none of them

exploits the multi-core client systems that run on current desktops and future

mobile platforms.

There are also research efforts of exploiting parallelism to improve browser

performance such as parallel layout algorithms [13, 66]. However, these spe-

cial cases only speed up web apps that make heavy use of specific features

(e.g., cascading style sheets (CSS)). Unfortunately, years of sequential opti-

mizations, the sheer size of modern browsers (e.g., Firefox has over 3 mil-

lion lines of code), and the fundamentally single-threaded event-driven pro-

gramming model of modern browsers make it challenging to refactor today’s

browsers into multi-threaded parallel applications.

Our previous work indicates that task-level parallelism applied to the

browser might be feasible [47]. We demonstrate that rendering logically

independent IFRAMEs in separate processes would result in performance gain.

However, this approach is limited to the tasks that the browser developers

identify ahead of time. And in practice, IFRAMEs do not always load balance.

To systematically exploit parallelism to improve the speed of web browsing,

we need to answer the following questions:

• How to automatically divide rendering of a single web app into several

loosely dependent tasks?

• How to load balance these tasks to overcome the overhead of running

them in different computing units?

• How to maintain the same look and feel and function of the original

web app?

In answering the above questions, we hope to have a systematical approach

that is able to speed up web browser in both desktop and mobile multi-core

platforms.
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8.4 Summary

There are two major directions to pursue future research. One is following

the principles learned in this dissertation to build practical and extensible

secure browsing systems in both desktop and mobile platforms.

The other is to research into the performance issues in today’s brows-

ing systems. With careful design, we hope to systematically parallelize the

process of web browsing, taking advantage of current and future multi-core

systems.
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CHAPTER 9

CONCLUSIONS

In recent years, the Web has crawled into almost every aspect of human life.

Meanwhile, the web browser has become the primary interface to today’s

computing systems, handling vital personal information and with implica-

tions for users’ security and privacy. Despite many attempts to improve the

security of web browsing, these efforts fail to address the fundamental issues

in modern browsing systems.

In this dissertation, we proposed a set of design and architectural principles

that should be followed when building secure browsing systems: 1) make

security decisions at the lowest layer of software and make it simple; 2) enforce

strong isolation between distinct browser-level components; 3) employ simple

and explicit communication between components; 4) provide the right set

of operating system abstractions; 5) maintain compatibility with current

browser standards; 6) expose enough browser states and events to enable

new browser security policies.

Following these principles, we presented IBOS, the first operating system

and web browser co-designed to reduce drastically the TCB for web browsers

and to simplify browsing systems. To achieve this improvement, we built

IBOS with browser abstractions as first-class OS abstractions and removed

traditional shared system components and services from its TCB. With the

new architecture, we showed that IBOS could enforce traditional and novel

security policies, and withstand attacks on device drivers, browser compo-

nents, or traditional applications.

We have also described the OP2 web browser – a standalone secure browser

architecture when a specialized browser operating system is not available.

This architecture resembles a microkernel operating system. By employing

a browser kernel to enforce security policies and explicit communications

between isolated browser components, this new browser architecture is able

to enable secure web browsing on top of commodity operating systems. We

112



have shown that by using an architecture that is designed to be secure we

can also use formal method to validate its security properties.

In addition, we presented browser-based approaches that try to improve

security further. We demonstrated four mechanisms – cookie protection,

frame-based attack defense, secure JSON deserialization, and DOM-based

XSS prevention. These mechanisms capitalize on unique details about web

apps to provide automated security mechanisms at the client side.

Overall, we show that the principles we proposed are able to guide the de-

sign of secure systems that overcome the issues of existing browsing systems.

We believe that the principles we defined and systems we built advance the

state of the art of secure web browsing.

113



REFERENCES

[1] CVE - Common Vulnerabilities and Exposures (CVE). http://cve.

mitre.org.

[2] Gecko plugin API reference. https://developer.mozilla.org/en/

Gecko_Plugin_API_Reference.

[3] JSON in JavaScript. http://www.json.org/js.html.

[4] Mitigating cross-site scripting with HTTP-only cookies. http://msdn.
microsoft.com/en-us/library/ms533046.aspx.

[5] Qt - A Cross-platform application and UI. http://qt.nokia.com/.

[6] The WebKit Open Source Project. http://webkit.org/.

[7] uClibc. http://www.uclibc.org/.

[8] Qt labs blogs: So long and thanks for the blit,
2008. http://labs.trolltech.com/blogs/2008/10/22/

so-long-and-thanks-for-the-blit/.

[9] L4Ka::Pistachio microkernel, 2010. http://l4ka.org/projects/

pistachio.

[10] Alexa. Alexa top 500 global sites. http://www.alexa.com/topsites.

[11] Anderson, J. P. Computer security technology planning study. Tech.
rep., HQ Electronic Systems Division (AFSC), October 1972. ESD-TR-
73-51.

[12] Apple Inc. About the security content of the iOS 4.0.2 update for
iPhone and iPod touch, August 2010. http://support.apple.com/

kb/HT4291.

[13] Badea, C., Haghighat, M. R., Nicolau, A., and Veidenbaum,
A. V. Towards parallelizing the layout engine of firefox. In Proceedings
of the 2nd USENIX conference on Hot topics in parallelism (Berkeley,
CA, USA, 2010), HotPar’10, USENIX Association, pp. 1–6.

114



[14] Balduzzi, M., Egele, M., Kirda, E., Balzarotti, D., and
Kruegel, C. A solution for the automated detection of clickjacking
attacks. In Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security (New York, NY, USA, 2010),
ASIACCS ’10, ACM, pp. 135–144.

[15] Barth, A., Caballero, J., and Song, D. Secure content sniffing
for web browsers or how to stop papers from reviewing themselves.
In Proceedings of the IEEE Symposium on Security and Privacy (May
2009).

[16] Barth, A., Jackson, C., and Mitchell, J. C. Robust defenses for
cross-site request forgery. In Proceedings of the 15th ACM Conference
on Computer and Communications Security (2008), pp. 75–88.

[17] Barth, A., Jackson, C., and Mitchell, J. C. Securing frame
communication in browsers. In Proceedings of the 17th USENIX Secu-
rity Symposium (USENIX Security 2008) (2008), pp. 17–30.

[18] Barth, A., Jackson, C., Reis, C., and The Google
Chrome Team. The security architecture of the chromium
browser, 2008. http://crypto.stanford.edu/websec/chromium/

chromium-security-architecture.pdf.

[19] BBC. Facebook ”clickjacking” spreads across site, June 2010. http:

//www.bbc.co.uk/news/10224434.

[20] Bohannon, A., and Pierce, B. C. Featherweight Firefox: For-
malizing the core of a web browser. In Usenix Conference on Web
Application Development (WebApps) (June 2010).

[21] Bomberger, A. C., Frantz, W. S., Hardy, A. C., Hardy, N.,
Landau, C. R., and Shapiro, J. S. The KeyKOS nanokernel archi-
tecture. In Proceedings of the Workshop on Micro-kernels and Other
Kernel Architectures (Berkeley, CA, USA, 1992), USENIX Association,
pp. 95–112.

[22] Brumley, D., Caballero, J., Liang, Z., Newsome, J., and
Song, D. Towards automatic discovery of deviations in binary imple-
mentations with applications to error detection and fingerprint gener-
ation. In Proceedings of the 16th USENIX Security Symposium (Secu-
rity07 (2007).

[23] Cadar, C., Dunbar, D., and Engler, D. R. Klee: Unassisted
and automatic generation of high-coverage tests for complex systems
programs. In Proceedings of the 2004 Symposium on Operating Systems
Design and Implementation (OSDI) (2008), pp. 209–224.

115



[24] Chen, S., Meseguer, J., Sasse, R., Wang, H. J., and Wang,
Y.-M. A systematic approach to uncover security flaws in GUI logic.
In Proceedings of the 2007 IEEE Symposium on Security and Privacy
(May 2007), pp. 71–85.

[25] Chen, S., Ross, D., and Wang, Y.-M. An analysis of browser
domain-isolation bugs and a light-weight transparent defense mecha-
nism. In Proceedings of the 14th ACM Conference on Computer and
Communications Security (CCS) (2007), pp. 2–11.

[26] Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet,
N., Meseguer, J., and Quesada, J. F. Maude: Specification and
programming in rewriting logic. Theoretical Computer Science 285, 2
(August 2002), 187–243.

[27] Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet,
N., Meseguer, J., and Talcott, C. Maude manual (version 2.3),
2007.

[28] Cox, R. S., Hansen, J. G., Gribble, S. D., and Levy, H. M.
A safety-oriented platform for web applications. In Proceedings of the
2006 IEEE Symposium on Security and Privacy (May 2006), pp. 350–
364.

[29] Criswell, J., Geoffray, N., and Adve, V. Memory safety for
low-level software/hardware interactions. In Proceedings of the Eigh-
teenth Usenix Security Symposium (August 2009).

[30] Douceur, J. R., Elson, J., Howell, J., and Lorch, J. R.
Leveraging legacy code to deploy desktop applications on the web. In
Proceedings of the 8th USENIX conference on Operating systems design
and implementation (2008), OSDI’08, pp. 339–354.

[31] Dunkels, A., Woestenberg, L., Mansley, K.,
and Monoses, J. lwIP embedded TCP/IP stack.
http://savannah.nongnu.org/projects/lwip/, 2004.

[32] Efstathopoulos, P., Krohn, M., VanDeBogart, S., Frey,
C., Ziegler, D., Kohler, E., Mazières, D., Kaashoek, F.,
and Morris, R. Labels and event processes in the asbestos operating
system. In Proceedings of the Twentieth ACM Symposium on Operating
Systems Principles (New York, NY, USA, 2005), ACM, pp. 17–30.

[33] Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J.,
McDaniel, P., and Sheth, A. N. Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smartphones.
In Proceedings of the 9th USENIX conference on Operating systems
design and implementation (2010), OSDI’10.

116



[34] Engler, D. R., Kaashoek, M. F., and Jr., J. O. Exokernel:
an operating system architecture for application-level resource man-
agement. In Proceedings of the 1995 Symposium on Operating Systems
Principles (December 1995), pp. 251–266.

[35] Erlingsson, U., Abadi, M., Vrable, M., Budiu, M., and Nec-
ula, G. C. Xfi: software guards for system address spaces. In OSDI
’06: Proceedings of the 7th symposium on Operating systems design
and implementation (Berkeley, CA, USA, 2006), USENIX Association,
pp. 75–88.
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