
Machine Bank: Own Your Virtual Personal Computer

Shuo Tang1, Yu Chen2, and Zheng Zhang2

1Tsinghua University

Dept. of Computer Sci. and Tech.
Beijing 100084, P. R. China

ts@mails.tsinghua.edu.cn

2Microsoft Research Asia
Beijing 100080, P. R. China

{ychen, zzhang}@microsoft.com

Abstract

In this paper, we report the design, implementation and

experimental results of Machine Bank, a system engi-
neered towards the popular shared-lab scenario, where
users outnumber available PCs and may get different PCs
in different sessions. Machine Bank allows users to pre-
serve their entire working environment across sessions.
Each client runs virtual machine, which is saved to and
reinstantiated from a content-addressable backend stor-
age. We carefully designed lightweight hooks at client side
that implements caching and tracking logics to improve
reinstantiation speed as well as to remove unnecessary
network and disk traffic. Our detailed evaluation demon-
strates that these techniques are effective, and the overall
performance fits well with the shared-lab usage.

1. Introduction

Many institutions and enterprises face the problem that

users outnumber available desktop PCs due to the cost,
space and management constraint. Therefore, sharing PC
is a very common practice. A common requirement under
this scenario is to enable the users to preserve their work-
ing environments across work sessions.

For example, Microsoft Research Asia has many intern
students. Due to the growth of personnel and lack of re-
sources, part-time interns have to share computers in non-
overlapping hours. They have two ways to ensure a work
context across sessions. They can use Remote Desktop
Connection [19] to work on dedicated servers, or copy
their working files on the PCs to some data servers at the
end of their work sessions. Both solutions have problems.
The first requires dedicated and powerful servers, and the
second is incapable of dealing with various software and
personalized configurations across different PCs. For the

1-4244-0910-1/07/$20.00 ©2007 IEEE.

time being, the first option is what the intern students typi-
cally use. Thus, the otherwise quite capable desktops in
the lab are essentially downgraded into dumb terminals,
whereas the group server(s) that the intern students associ-
ate with become overloaded. This situation is not unique.
In Tsinghua University, the administrators of Central
Computer Lab (open to all students) experience the similar
problem when offering computers to students for their
homework assignments. In fact, the current practice is to
offer a clean system every time a user starts a session. As
such there is no support of preserving a user’s work envi-
ronment. In what follows, we will refer to this usage sce-
nario as shared-lab.

Virtual machine (VM) technologies such as Virtual PC
[18] and VMWare [21] have brought the possibility to
encapsulate the complete work environment of a user, and
move it anywhere. The improvement of the hardware per-
formance has also made the performance penalty of using
the VM increasingly negligible. Furthermore, in the
shared-lab scenario, network connectivity is often not only
adequate, but also underutilized. Given that we can use
commodity PCs to build large storage farm [10][15], an
obvious architecture is to store a user’s work environment
into a storage vault when the user logs off, and then rein-
stantiate it to the user’s next working PC (the destination
PC) on-demand. However, there are a number of issues
need to be addressed.

More often than not, the next PC is unpredictable. This
results in several implications. First, when a user leaves a
session, the entire environment must be backed up into a
safe vault. The shared PC that the user just worked on may
be trashed by the next user. Second, storing the entire VM
image to the backend is wasteful. In fact, there are ample
opportunities to optimize. For instance, even after person-
alization, the majority of the bits of a software package
(e.g. Microsoft Office) do not differ across users in any
significant way. Likewise, useless updates (e.g. temporary
files) should not be committed to the backend storage.
Third, in terms of performance, fast reinstantiation is criti-
cal. This means that we must reuse whatever data a previ-

ous user has left and optimize the performance when
fetching data from backend storage otherwise.

Our solution to the situations is called the Machine
Bank, analogy to the safebox image associated to a bank-
ing institute. The architecture combines lightweight hook
at client side with a state-of-art content-addressable and
highly reliable distributed storage system made of com-
modity PCs. Users’ working environments at different
sessions are encapsulated, versioned, and archived. In ad-
dressing the problems mentioned earlier, we employ a set
of comprehensive techniques:
• On-demand fetching and caching mechanism to re-

duce VM reinstantiation latency. Unlike other solu-
tions that have been proposed, we use a two-level
cache architecture. The first level is private to a login
session, and the second is a shared one across multi-
ple sessions on a single PC. This enables maximum
leverage across session boundary, even when ses-
sions correspond to different users.

• Leveraging the content-addressable nature of the
backend storage, we allow sharing across users and
versions without imposing sophisticated metadata
structure so that storage utilization does not explode
with user population.

• We track disk updates to ensure that only useful up-
dates are committed to the backend.

We have completed the full implementation at the cli-
ent side and embedded a minimum set of functionalities at
the backend server. Our evaluations suggest that our vari-
ous optimizations are effective.

The remaining sections are organized as follows. In
section 2 we analyze the main problem. Section 3 de-
scribes the design in detail and Section 4 provides imple-
mentation details. In Section 5 we provide experimental
results. We cover related work in section 6, and we dis-
cuss future work and conclude in Section 7.

2. Migrating working environment

The working environment of a user consists of software

(including OS, applications and their personalized set-
tings) and the user’s personal document/data. Virtual ma-
chine (VM) technology decouples the working environ-
ment from the underlying physical hardware and encapsu-
lates the user’s complete working environment into a VM.

The core of VM technology, Virtual Machine Monitor
(VMM), runs upon underlying host machines (sometimes
host operating systems) to provide a virtual hardware en-
vironment for conventional software [7]. Commercial
VMMs such as Microsoft Virtual PC [18], VMware [21]
all provide virtualized x86 platform. In our prototype sys-
tem, we choose Microsoft Virtual PC as the platform to
generate and migrate working environments. In Microsoft
Virtual PC, a virtual machine is represented by a set of
files including the VM configuration file, the virtual hard

disk (VHD) file and sometimes a VM state file which con-
tains the compressed runtime memory and hardware state.
In the shared-lab scenario, the VM state file is not needed
because the user logs off from one session completely.
Since the content of these files changes over time, we col-
lectively call the content of these files a virtual machine
instance (VMI). By copying a user’s VMI over a network,
the VMM on another machine can reincarnate the VM to
the state specified by the VMI, thus accomplishing the
goal of moving the user’s complete working environment.

As a working environment is encapsulated into a VMI,
its size becomes a problem for both storage and migration.
A typical VHD file is several gigabytes, and a VM state
file amounts to hundreds of megabytes depending on the
VM memory size. Therefore, the storage consumption and
transmission time of VMIs without any optimization
would be practically unacceptable.

To find potential optimizations, we conducted some
preliminary investigations, showing that
1) The guest operating systems and other software only

need a few megabytes of contents to start up and
reach the ready state. For example, Windows XP
starts in 30s ~ 1min and only needs to read about 75
MB disk content. The application software, such as
Microsoft Office 2003 and Visual Studio 2003 needs
even less.

2) IT supporting staff usually uses a disk image (e.g.
ghost image) to replicate software on new machines.

The first observation means that a user can start to
work when the VMI is partially available, and the rest can
be fetched on-demand later. The second implies that sys-
tems of different users are evolved from the same start ing
point and there is a significant amount of overlapping
among different VMIs.

3. Design

Machine Bank is organized as a Client/Server architec-

ture. The server side is BitVault[15], a reliable backend
storage system responsible for storing VMIs of all users.
The client side runs Virtual PC which instantiates users’
working environments.

BitVault is a scalable distributed storage system to re-
liably store large amount of immutable data. BitVault is
not a distributed file system. Instead, it gives a very large
logical space (160bits) in which blobs of data can be
checked in and out. The hash of the object is the handle
for later checkout. In other words, BitVault is content-
addressable. Two blobs with the same hash will only be
stored once, as the collision probability is extremely small.
The building block of BitVault is commodity PC which,
when aggregated, can give extremely large storage capac-
ity. Since commodity PCs are prone to failures, the core
technologies of BitVault are to lower down the manage-
ment overhead by automatically retaining reliability and

availability goals. BitVault can continue to operate even
when the system is handling failure or responding to re-
configuration (such as adding capacity by inserting a new
PC online). One of our current installations uses 32 desk-
top PCs, with a total of 1TB of usable space. We should
point out that for the purpose of Machine bank, any con-
tent-addressable storage system will work equally well.

The client-side takes care of on-demand fetching and
sharing across different sessions. There are three mecha-
nisms:
• VHDs are split into blocks and blocks are addressed

and accessed by their content hash. This enables
fetching partial VHDs as well as block sharing across
VHDs of different users.

• A piece of code is inserted into the VMM to enable
fetch-on-demand of VHD, decreasing the time re-
quired to instantiate a VM.

• VHD writes are cached locally and only useful up-
dates are committed into the back-end storage after
the VM is closed.

The VMIs of a user are versioned and stored in Bit-
Vault. When the user comes to a machine and begins to
work, the VMI (usually the newest one) is retrieved and
instantiated. Since the VHD is split into blocks, and only
the needed blocks are fetched, instantiation latency is re-
duced. During a session, disk updates are tracked and
cached locally. After a user finishes a session, the useful
updates are identified to create a new VMI, which is
committed into BitVault.

3.1. Overall architecture

The client side implements a Cache Management Proc-

ess that bridges the interaction between Virtual PC and
BitVault. It operates on a two-level cache, supporting VM
instantiation via fetch-on-demand to VHDs and the crea-
tion and committing of new VMIs.

The first level cache (the private cache) imitates a pri-
vate VHD mirror to the underlying VHD for a VM and

handles I/O requests from VMM. All accesses to VHD
issued by VMM are trapped by an I/O interceptor and
forwarded to the private cache. The access unit in this
cache could be the guest OS file system cluster. However,
this requires a priori knowledge on the file system and
disk analysis, because different VMs could use different
cluster sizes. To keep it simple, we choose sector as the
access unit, as is used in hard disks. The private cache is
implemented using a sparse file, and there is a determinis-
tic 1-1 mapping between the sectors of the VHD and the
offset of the sparse file. The major function of the private
cache is to cache VHD content updates, which will only
be committed to BitVault at the end of session. As we will
describe later, it is not efficient to simply commit all the
updated sectors.

Microsoft Virtual
PC

Microsoft Virtual
PC

Microsoft Virtual
PCVMMs

First Level
Private Cache

(Partial VHDs)

Second Level
Shared Cache

(Blocks)

Back-End
Storage

(BitVault)

I/O Interceptor

Network

Physical Machine A Physical Machine B

C
ache M

anagem
ent Process

C
ache M

anagem
ent Process

Figure 1: Cache architecture
The second level cache (the shared cache) interfaces

with BitVault to fetch demanded blocks and caches them
on behalf of requests from the private cache. Different
from the private cache, the access unit of the shared cache
is a block, which consists of several consecutive sectors.
As the access unit between client and BitVault, block also
presents a tradeoff of optimizing VM instantiation per-
formance. Larger block improves throughput, but at the
expense of bringing more useless sectors. We will discuss
this issue in detail in section 3.3.

In both BitVault and the shared cache, the blocks are
identified and accessed by their content hash using SHA-1
[17]. The probability that two blocks map to the same 160-
bit SHA-1 hash is negligible; the newest research shows
that the complexity required for finding a collision in
SHA-1 is 263 [13], which is less than the error rate of a
TCP connection or memory. Therefore, blocks from
VHDs in different VMIs from different users can share
storage space in BitVault. Moreover, this access mecha-
nism also enables different VMI instantiations on the same
client to share VHD content. After a user logs off from a
client machine, the accessed blocks in the instantiation
remain in the shared cache. Therefore, when the next user
comes, the blocks shared between the previous instantia-
tion and the new one could be fetched from the shared
cache directly. As a result, the network consumption and
instantiation latency are reduced. If the two users are actu-
ally the same person, or are using two VMs evolved from
the same starting point, the saving can be significant.

3.2. Coordinating the private and shared cache

Since the private cache is addressed by sector offset

and the shared cache is addressed by block content hash,
there is a need to establish a fixed mapping between the
two. For example, Virtual PC issues a read request for the
9th sector in VHD, and the private cache misses. Then we
need to find the corresponding block in the shared cache
using a hash. In order to decide the hash of the block con-

Check sector state

CLEAN
or

DIRTY
ZERO

Obtain the corresponding block抯 ID

EMPTY

Search the block in the shared cache

Copy the block from BitVault to the shared cache

Miss

Hit

Read request

Return the corresponding
 sector in the private cache

Return a zeroed
sector

Fetch the Index file and
configuration file (.VMC)

Start Virtual Machine

Return the corresponding
 sector in the shared cache

Next

Figure 2: Instantiation procedure

SHA -1: 4E11

Index File

Shared Cache (Blocks)

4E11

Private Cache (Partial VHD)

3

3

00 01 10 11

21

1 2

. . .

00: EM PTY
01: ZERO
10: CLEAN
11: D IRTY

FF1A

A1B1

Record for the 3rd block

Figure 3: Data structure of the index file. The
requested sector is the 1st of the 3rd block.

taining the sector, a metadata file – VHD index is em-
ployed to bridge the gap.

As shown in Figure 3, a VHD index file is composed of
a sequence of records, each corresponding to a block in
the VHD. In each record, there is a field (block ID) storing
the content hash of the block. Besides the content hash, we
also allocate 2 bits for each sector in the block to store the
sector state in the private cache. There are four states:
• EMPTY (00): The corresponding sector in the pri-

vate cache does not contain valid data. Access on this
sector will cause a miss in the private cache.

• CLEAN (10): The corresponding sector in the private
cache contains data ready for read.

• DIRTY (11): The corresponding sector has been up-
dated in this instantiation. Note that read on a sector
in this state is also allowed.

• ZERO (01): Data contained in the corresponding
sector is a sequence of zero. The reason of introduc-
ing this special state will be explained in 3.4.

Recall the example earlier in this section. As shown in
Figure 3, the 9th sector is in the 3rd block and the sector
status is EMPTY. So the content hash (0x4E11) is re-
trieved to search for the block, which is currently in the
shared cache.

The size of the index file is proportional to the VHD
size. In our prototype, a 4GB VHD generates a 3.1MB
index file.2 If the VHD is 40GB, the index file would be
31MB. The instantiation process (described next) will
need to get the index before moving forward. For the
shared-lab environment where network bandwidth is
abundant, the bottleneck is the disk I/O (at one of the Bit-
Vault node). Assuming a 5MBps random I/O bandwidth,

2 Each block contains 128 sectors (64KB). The reason of choosing 64KB
as the block size will be explained in the section 3.3.

this will take roughly 6 seconds to retrieve. Thus, we be-
lieve this design is adequate for shared-lab scenario.

3.3. Instantiation

A user could have one or more instances stored in the

BitVault. To reinstantiate his/her VMI on a client, the cor-
responding VM configuration file and VHD index file
need to be retrieved first. During a VM instantiation, all
VHD accesses issued by VMM are forwarded to the
Cache Management Process. Figure 2 shows the proce-
dure of handling the disk reads.
• If the requested sector is CLEAN or DIRTY, read it

directly from the private cache.
• If the status is ZERO, return a zeroed buffer to the

VMM.
• If the status is EMPTY, obtain the corresponding

block’s ID from index file and search in the shared
cache. If the block is still not found, use the ID to copy
the block from BitVault to the shared cache. Then
copy the content from the shared cache to the read
buffer directly of VMM and return. Note that we didn’t
fill the private cache to avoid extra local disk accesses.
And the subsequent reads to the sector can be still fed
from the shared cache.
As we mentioned earlier, we implement the private

cache as a sparse file. The length of the file should be the
same as the VHD size. The reason of not using a normal
file to implement it is because many sectors will never be
written. The EMPTY sectors are to be retrieved from Bit-
Vault by their content hash, and therefore should reside in
the shared cache.

The shared cache is organized as a file folder in the
host OS. A block is saved as a file using the hex represen-
tation of is content hash as the file path. This naturally

100

1000

10000

100000

1MB 512KB 256KB 128KB 64KB 32KB 16KB 8KB 4KB 2KB 1KB 512B

A
cc

es
se

d
B

lo
ck

s

Block Size

Boot Windows Launch Word Compile Geometric Progression

Figure 4: Relationship between Accessed-
Blocks and BlockSize.

10

100

1000

1MB 512KB 256KB 128KB 64KB 32KB 16KB 8KB 4KB 2KB 1KB 512B

To
ta

l L
at

en
cy

 (s
ec

)

Block Size

Boot Windows Launch Word Compile

Figure 5: Relationship between total latency
and BlockSize.

uses the file system directory structure to implement the
hash lookup to store and retrieve a block. To avoid the
performance penalty of putting too many files in a single
folder, we break the hex string into segments of 2 charac-
ters long. Each segment represents a sub-folder except the
last one. In this way, the number of files/sub-folders in
each folder will not exceed 256 and the folder hierarchy
contains at most 20 levels with SHA-1. For example, the
block 4E11 will be placed as the file
“d:\MBCache\4E\11”. As our experiment results will
show, this straightforward implementation delivers satis-
factory performance.

The shared cache needs a replacement algorithm in
case the storage utilization of the host machine becomes
too high. A common cache replacement algorithm, such as
LRU or LFU, can be employed, although in this prototype
we have not implemented that. Since we do not copy con-
tent from the shared cache to the private cache when read-
ing an EMPTY sector, the replacement algorithm may
cause a block to be swapped in and out of the shared cache
repeatedly, if the EMPTY sector is read sporadically but
endlessly. Therefore, we implement a locking mechanism
to prevent those blocks referenced by some EMPTY sec-
tors in the private cache from being removed. When such
removal becomes necessary, we will fill the related EMP-
TY sectors with the block content and change the state of
those sectors to CLEAN.

On-demand fetching eliminates the waiting time before
booting a VM, but also introduces extra latencies at VM
instantiation. The latency is composed of two parts: a
fixed delay and the block transferring delay. The fixed
delay is an inherent property of the underlying network
and BitVault (e.g. disk seek on a BitVault node and the
message delay for sending requests to a BitVault node).
The block transferring delay depends on block size and
network bandwidth. Therefore, the total extra latency for a
series of disk access is

⎟
⎠
⎞

⎜
⎝
⎛ +×=

BandWidth
BlockSizeFixDelayocksAccessedBlLatency Total

While larger blocks require longer transferring time, they

have a prefetching effect and serve better for sequential
disk reads. For sequential reads, since the number of ac-
cessed blocks is inversely proportional to the block size,
the total block transferring time is almost a constant for
any block size. Thus, fewer accessed blocks lead to fewer
fixed delay. On the other hand, for random reads, smaller
blocks are desirable because using larger blocks is likely
to fetch a large amount of unnecessary data.

To find the optimal point of block size, we conducted
several experiments on Virtual PC to get some VHD ac-
cess traces. The traces include booting Windows XP,
launching Microsoft Office3 and compiling a project using
Visual Studio C++.Net. The first one is mainly composed
of sequential reads, the second one has a lot of random
reads, and the third one includes both random reads and
writes.

We apply our on-demand fetching logic to the traces to
get the values for AccessedBlocks on different BlockSize.
According to [15], FixDelay is 8 milliseconds and Band-
Width is 6 MBps (taking TCP slow start and concurrent
accesses into account). Using the formula above, the total
latency can be estimated.

Figure 4 clearly shows that the number of accessed
blocks is inversely proportional to block size when it is
smaller than 64KB. For blocks larger than 64KB, the
number of accessed blocks is pushed up away from the
inversely proportional curve, indicating the impact of
fetching of unnecessary data. As shown in Figure 5, our
estimations indicate that 64KB is the optimal tradeoff
point of fixed delay and the block transferring delay for all
traces.

Further analysis on the traces indicates that almost all
the reads issued from VPC are for 64KB and 32KB
blocks, revealing a possible pre-fetching behavior in VPC
and/or Windows.4

3 We launch Word, Excel and PowerPoint consecutively.
4 According to Windows Internals, windows read 64KB for file reads by
default when the running process does not specify other policies.

3.4. Commit

Creation and commit of new VMIs are important for

users to preserve their working environments and results.
Committing VMIs generally falls into two categories –
initial commit and update commit.

The initial commit is for creating the first VMI from a
VM and storing it into BitVault. It can be used to store a
golden state into BitVault for users to start with. The ini-
tial commit scans through the VHD file of a VM, calculat-
ing content hash for each block and checking in block to
BitVault using the content hash as their IDs. The index file
is also created along this scanning processing, recording
IDs for all blocks and setting flags of all sectors to be
EMPTY. Then the index file and the VM configuration
file are packed together and checked in to BitVault, repre-
senting the new VMI.

The update commit creates and commits new VMIs af-
ter a user finishes a session. As described previously, all
updates to VHDs are intercepted and recorded in the pri-
vate cache, and the index file marks all the written sectors
as DIRTY. Consequently, the simplest way of update
committing is to scan the index file for DIRTY sectors and
create new blocks by merging the DIRTY and non-
DIRTY sectors. If a modified block also has non-DIRTY
sectors that are marked EMPTY, these sectors are first
fetched from BitVault with a similar procedure described
in 3.3. Then the new blocks are committed into BitVault
using their content hashes and the corresponding records
in the index file are updated (assigning the new hash value
and setting all sectors’ state to EMPTY). Finally, the index
file and the VM configuration file are packed and checked
into BitVault to represent a new VMI. If any error has
stopped the index file from being checked in, then this is
as if the VMI is not stored into BitVault. As long as the
private cache’s contents are not lost, the VMI can be cre-
ated again.

A problem in the commit process is that not all sectors
marked DIRTY are useful updates. In order to save the
space consumption at storage side and reduce the commit-
ting time, we want to exclude unnecessary updates. For
example, the page files of virtual memory bring significant
amounts of DIRTY sectors, whereas they are essentially
useless for the next instantiation after the guest operating
systems are shut down. If we can identify those sectors,
we can simply set their states to EMPTY. However, in
general this is not possible. To solve this problem, we lev-
erage a security feature in Windows, which clears the con-
tent of page files by writing zeros to it during OS shut-
down. This is how the ZERO state is brought into the
play: the sectors with zeros are marked with ZERO in the
index file. And the private cache logic for writes becomes:
• If content written to a sector are all zeroes, skip disk

accesses and mark the sector as ZERO in the index.

• If not, write directly to the private cache and mark
the sector as DIRTY in the index.

At the commit time, the updated blocks full of zero sec-
tors can be skipped. Since when accessed, a buffer of zero
will be returned (refer to Section 3.3). This mechanism
saves both commit traffic as well as instantiation traffic.
Another benefit of the ZERO state is that the cost of writ-
ing zeros to the sectors is skipped too: we only update the
index file.

For Linux systems, it is even simpler because the
whole swap partition can be ignored through parsing the
VHD partition table when committing.

Another problem relates to temporary files. Many user
workloads generate large amount of files that will not be
needed after shutdown. Compiling a big project and oper-
ating a Microsoft Office document are such examples. On
deleting a file, most operating systems only modify the
containing directory while leaving the disk sectors of the
file unchanged. While this optimization saves disk I/O, it
becomes a challenge for Machine Bank because the disk
sectors occupied by the deleted files will also be commit-
ted unless we can identify them.

To solve this problem, we parse the cluster allocation
table of the file system in the VHD and set the updated
sectors (marked as DIRTY or ZERO) in unallocated clus-
ters to CLEAN. Specifically, in NTFS, we check the
$BITMAP file to discard the unallocated clusters in the
disk. Thus, these blocks will not be committed to the
backend storage.

3.5. Versioning of VM instance

As a user continuously creates and commits new VMIs

in his/her daily work, an evolution history of the user’s
VM is generated. By browsing the history and reinstanti-
ate a previously checked-in VMI, a user is able to perform
“time travel”. This capability is very useful, especially
when permanent failures occur in the current VMI.

To accomplish this, we leverage the Catalog File (CF)
feature in BitVault. With Catalog File, a user can add an

VMC

VMI 12/10/04

…...

VMI 10/2/04

VMI 10/1/04

VMI 12/7/04

…...

VMI 9/6/04

VMI 9/5/04
Alice Bob

VMI
History

VHD block

VMC

VMC

VMC

VMC

VMC

Figure 6: Logical structure of VM instances in
BitVault.

optional description and a catalog id when checking in an
object. BitVault will group the ids and descriptions of the
objects with the same catalog id into a Catalog File. The
Catalog File can be checked out using the catalog id as if
it is a common object.

In Machine Bank, a VMI is represented by the vmc file
(VM configuration file which is typically very small) and
the VHD index file, since the VMI can be reinstantiated as
long as the two files are available. So we call the package
of these two files a VMI package. When committing a
VMI, we store the current time as the description and then
check in the VMI package to BitVault, using the user’s id
as the catalog id. As shown in Figure 6, pointers to VMIs
are thus grouped into the catalog file keyed by the user id.

By default, the Machine Bank client automatically re-
trieves the latest VMI from the catalog file and starts the
reinstantiation. Alternatively, the user can browse the cata-
log file and choose which VMI to reinstantiate from. This
is how time-travel is accomplished. Figure 6 also demon-
strates how storage sharing is achieved at block level
across different users and different sessions: for any
unique block, there is one and only one copy stored inside
BitVault

4. Implementation

We implemented our prototype on Windows XP using

C++. The system consists of three components: a hook
library that intercepts accesses to VHD file from VPC, a
daemon for interacting with BitVault, and the committer.

The hook library intercepts four Windows APIs, Cre-
ateFile, ReadFile, WriteFile and CloseHandle, which cor-
respond to fopen, fread, fwrite and fclose in C runtime,
respectively.5 In Windows, these four functions are im-
plemented in the kernel module Kernel32.dll. Modules in
a process invoke the functions by looking up their Image
Address Tables for the function addresses [20]. According
to this behavior, the hook library modifies the entries of
the four functions in Image Address Tables of all modules
(except the hook library itself) in the VPC process. There-
fore, calls to these functions are intercepted without modi-
fying VPC source code and Windows kernel. When any of
the four API functions is invoked, the hook library checks
whether it is for the VHD file. If it is, the cache logic de-
scribed above is used to handle the file request. If not, the
request is directed to the original addresses in Ker-
nel32.dll. Since Virtual PC does not use file mapping to
access VHD files, we just ignored CreateFileMapping and
MapViewOfFile / UnmapViewOfFile APIs, which pro-
vide similar functionalities as mmap().

The daemon is built upon the BitVault interface and is
in charge of checking out blocks from BitVault to the
shared cache. The communication between daemon and

5 VPC only uses these four APIs to access VHD and VMC files.

hook library is via IPC using Windows share memory and
semaphore.

Finally, the committer is used for both initial commit-
ting and updates committing.

5. Experimental Results

We conducted some experiments to evaluate the effi-

ciency of our solution. Client PCs used in the experiments
run Microsoft Windows XP and Virtual PC. Their hard-
ware configurations are 2.8GHz Pentium4 CPU with 1GB
memory. Another four machines with 120G SATA hard
disks, 3GHz Pentium4 CPU and 512MB memory run Bit-
Vault servers to provide back-end storage. All client and
server machines are connected with two AT-8324SX
100Mb switches stacked together using 100Mb NICs. We
configured the VMs to have 128MB memory (Windows
automatically allocated 768MB page file) and 4 GB VHD.
The software in VM includes Microsoft Windows XP with
SP1, Office 2003 and Visual Studio C++.net. We commit-
ted the VHD into BitVault using block size of 64KB (the
optimal one in Figure 5).

As the BitVault has provided the reliable storage to the
users, we conduct the following experiments to evaluate 1)
on-demand fetching and corresponding caching mecha-
nism to reduce migration latency in section 5.1, and 2)
cost of committing with the help of access-by-hash and
useful update detection policies in section 5.2.

5.1. Instantiation efficiency

We collected data of reinstantiation by revisiting the

preliminary analysis experiments of booting up Windows
XP, launching Microsoft Office and compiling a project
using Visual Studio C++.Net. These are typical behaviors
of intern students.

For comparison, we test our prototype in four different
conditions and collect the corresponding latencies.
• Empty Cache: the instance is started with both cach-

es empty, meaning all blocks must be fetched on-
demand from BitVault;

• Primed Cache: the shared cache has all needed sec-
tors for the reinstantiation, i.e. the latency measured
in this condition excludes the on-demand fetching la-
tency;

• Local VHD: tasks are performed on a VM stored
completely on local disk.;

• Remote VHD: the VHD is stored in a mounted net-
work drive. To imitate the write back cache as our
private cache, we turn on the undo disk functionality
in Virtual PC, which caches disk writes to a local log
file.

The latencies of Primed Cache indicate the best possi-
ble performance using Machine Bank. The difference be-

113

17

66

110

24

67
78

11

4243

10

41

0

20

40

60

80

100

120

140

Booting Windows Launching Office Compiling

In
sta

nt
ia

te
 T

im
e

(s
ec

)

Remote VHD Empty Cache Primed Cache Local VHD

Figure 8: Elapsed time of instantiation for
different task.

0
5

10
15
20
25
30
35

Booting Windows Launching Office CompilingO
n-

D
em

an
d

Fe
tc

h
La

te
nc

y
(s

ec
)-

Mesured Estimated

tween Primed Cache and Local VHD represents the over-
head of our cache logic. The latencies of Empty Cache are
the worst case performance. The difference between Emp-
ty Cache and Primed Cache reveals the cost of fetching
blocks from BitVault.

As shown in Figure 8, for Launching Office and Com-
piling, the latencies of primed cache and local VHD are
statistically identical. This means that the cost of pure
cache logic is negligible. The gap in Booting Windows is
caused by a strange behavior of Virtual PC, in which our
trace showed repeatedly file enumerations in the directory
that contains the VHD file in VM startup.6

The latencies of Empty Cache almost equals to the ones
of Remote VHD, meaning BitVault provides a similar
access performance as the Windows network file system.
Since the shared cache is usually not empty, the real per-
formance that a user experiences in daily use is between
the Empty Cache and the Primed Cache. By adding pre-
fetching algorithms to our cache logic, we expect the in-
stantiation performance could be improved even further.

Figure 7 plots the time stalled while waiting for the
blocks to arrive from BitVault. The figure also draws the
estimated stall time, using the traces and the formula de-
scribed in Section 3.3. If the user log in session lasts sev-
eral hours, a half-minute longer booting does not appear as
a huge overhead. Likewise, if the user uses application
(such as Office and compiling projects) throughout the
session, the 20 seconds delay will be paid only once.
Thus, we conclude that the performance is adequate for
the shared-lab scenario.

5.2. Commit cost

As described in section 3.4, the committing phase in-

cludes the initial commit and the update commit. In the
initial commit, we commit the 4GB VHD into BitVault

using 64KB blocks. The OS and the software installed in
the VM consumed 3.63GB of the VHD space. After initial
commit, a total of 47391 unique blocks are generated,
amounting to 2.89GB. The difference is caused by exclud-
ing the 768MB page file. Since we enable clear page file
policy mentioned in section 3.4, the disk sectors occupied
by page file are set to ZERO and blocks full of ZERO
sectors are omitted in committing.7

Meanwhile, an index file of 3.1MB is created, in which
the 160bit content hash for each block occupies 1.1MB
and the rest are for sectors’ state. Because initial commit-
ting only assigns EMPTY or ZERO to each sector (DIR-
TY or CLEAN are used only within a session), we use a
gzip library [6] to compress the index file to around
1.4MB. Thus, the index itself is very small.

For update commit, we carried out two experiments to
validate the efficiency of detecting useful updates. In the
first experiment, we started Windows XP, compiled a pro-
ject, and deleted all the generated files except the exe file.
Then, the VM was shut down and committed. The compi-
lation generated a total of 55MB files, in which the exe
file is 1.4MB. In the second experiment, we started Win-
dows, created and saved a Word document of 1.5MB, then
shut down and commit the VM. During document editing,
Word created 5MB temporary files, which was deleted
after Word was closed. For each experiment, we collected
the total number of dirty sectors and the number of useful
dirty sectors after applying P1 (introducing ZERO and
clearing page file) and P2 (discarding unallocated clus-
ters).

Figure 7: Latencies of on-demand fetching
for different tasks.

 6 We conducted experiments that change the extension of local VHD

files and force the VM configuration file to use relative path point to
local VHD files. In both cases, Booting Windows got slow down.

7 The unallocated disk sectors are also ZERO. When creating a new fix
VHD, Virtual PC sets the initial content of the VHD file to zero.

In the experiments, we recorded a total of 459170
(224.2MB) and 421448 (205.8MB) dirty sectors for Com-
piling and Editing Word Doc, respectively. As shown in
Figure 9, P1 in Compiling discards around 60% of the
dirty sectors and P2 further extends the reduction to
around 85%. Noted that 224.2MB*(85%-60%) = 56MB,
which is very close to the amount of files that are deleted.
In Editing Word Doc, we also get a reduction of more than
80% using both P1 and P2. Because Word creates rela-
tively small number of temporary files, the effect of P2 is
limited.

Although the dirty sectors left after applying P1 and P2
are no more than 20% of the total, the absolute value is
still exceeds our expectation. The number of dirty sectors
left is 69290 (33.8MB) in Compiling and 61429 (30.0MB)
in Editing Word Doc. The additional dirty sectors come
from disk writes on NTFS system files and other files such
as registry hive files and application configuration files.
We analyze the result of Editing Word Doc experiment
and find that the dirty sectors belong to 208 files/folders.
In Table 1, we summarize the top 10 “dirty” files/folders.

The “\Doc1.doc” is the word document we produced in
the experiment. To our surprise, the virtual memory page
file “\pagefile.sys” still contributes more than 12MB non-
zero dirty data, although the clear page file option is en-
abled. Other updated files include NTFS system files
($MFT and $LogFile), OS system files/folders and regis-
try hive files (NTUSER.DAT) that contains user’s per-
sonal settings. These files as a whole actually represent the
evolution of the user’s working environment.

6. Related work

In recent years, virtual machine monitor technology re-

vives with Disco [3], Denali [14] projects and commercial
products, such as Microsoft Virtual PC [18] and VMWare
[21], long after the upsurge of research into virtual ma-
chines at hardware level [7] in 1970s. This brought many
new and interesting applications. For instance, Chen and

Noble [4], Kozuch and Satyanarayana et al [8][12] have
independently come up with the idea of using virtual ma-
chines for user mobility. Awadallah and Rosenblum pro-
posed the vMatrix architecture to achieve server multi-
plexing using VMWare x86 VMMs [1][2]. Zhao et al util-
ized the facility of VMMs to provide execution environ-
ments across distributed resources in grid computing [16].

Instead of focusing on advanced use such as moving
the work environment among multiple machines owned by
the same user, we concentrate on the popular scenario of
shared laboratory. In this case, it is unpredictable where
the user will start the next work session and techniques
such as fast-migration [5] does not apply. While we do not
need to concern ourselves with the issue of copying mem-
ory state, there are challenges on how to instantiate a user
session and launch the application faster, and how to max-
imize the storage utilization at the backend server. These
two problems are also addressed in the Collective system
[11], which is the most closely related to our work.

Instead of using a single cache with small sectors, we
carefully analyzed the applications and institute a second
level cache with larger cache granularity. We use secure
hash as the handler to address a block in a content-
addressable reliable storage, and encode the hashes in a
per-user per-session index file. This makes blocks across
sessions and users are sharable, without the need of a so-
phisticated hierarchy as is done in the Collective system.
Fetching and caching this index file at the client means
retrieving missing block takes one round trip to the back-
end, as opposed to multiple rounds otherwise. Finally, to
make sure that useless blocks waste neither bandwidth nor
storage space, we skip them before committing to the
server. Our evaluations have shown that these techniques
are effective. In a recent work [9], Partho Nath et al. also
gave detailed evaluation about the impact of chunk size to
backend storage consumption, network utilization and
privacy. But we focused more on ways of reducing net-

Table 1: Top 10 “dirty” files in editing Word
doc experiment

0%

20%

40%

60%

80%

100%

Compiling Editing Word Doc

D
irt

y
Se

ct
or

s (
%

)

No Policy P1 P1&P2
Figure 9: Percentage of reduction of dirty
sectors after applying policies.

file path # of dirty
sectors

\pagefile.sys 25200
$LogFile 7632
\Documents and Settings
\Administrator\Local Settings
\Application Data\IconCache.db

7561

$MFT 4487
\Doc1.doc 3325
\WINDOWS\system32\config\system 3142
\WINDOWS\system32\wbem\Repository
\FS\OBJECTS.DATA 2334

\WINDOWS\system32\config\software 1457
\Documents and Settings
\Administrator\NTUSER.DAT 1211

\WINDOWS\system32 (folder) 584

work latency of VM reinstantiation and discarding “use-
less updates”.

7. Conclusions and future work

In this paper, we report the design and implementation

of Machine Bank, which enables backup, fast migration
and re-instantiations of Virtual Machine Instances. Ma-
chine Bank is layered on top of a content-addressable data
retention platform BitVault and employs a two-level cache
structure to enable 1) fetch-on-demand of data to reduce
the time required to instantiate a VM, 2) copy-on-write to
commit only differences of VM state and 3) access-by-
hash to allow data shared among different VM instances.
Our result shows that the block size of 64KB yields the
best instantiation performance. Moreover, with our update
detection mechanism, a good fraction (more than 80% in
our experiments) of disk updates are identified as useless
and discarded in the experiments.

Our future work centers mostly on the management and
administration of the Machine bank, and there are issues at
both the client and the server side. On the client side, our
current prototype does not encrypt the index file, opening
a possibility of compromising user privacy. On the server
side, we will need to address the issue of removing all
VMIs that the users are no longer interested in.

References

[1] A. A. Awadallah and M. Rosenblum. The vMatrix: A net-

work of virtual machine monitors for dynamic content dis-
tribution. In Seventh International Workshop on Web Con-
tent Caching and Distribution, August 2002.

[2] A. A. Awadallah and M. Rosenblum, The vMatrix: Server
Switching, IEEE 10th International Workshop on Future
Trends in Distributed Computing Systems (IEEE FTDCS
2004), May 2004.

[3] E. Bugnion, S. Devine, and M. Rosenblum. Disco: Running
commodity operating systems on scalable multiprocessors.
ACM Transactions on Computer Systems, 15(4):412–447,
November 1997.

[4] P. M. Chen and B. D. Noble. When virtual is better than
real. In Proceedings of the 8th IEEE Workshop on Hot Top-
ics on Operating Systems, May 2001.

[5] C. Clark, K. Fraser and S. Hand. Live Migration of Virtual
Machines, In Proc. 2nd Symposium on Networked Systems
Design and Implementation, May 2005

[6] P. Deutsch. Zlib compressed data format specification ver-
sion 3.3, May 1996.

[7] R. P. Goldberg. Survey of virtual machine research. Com-
puter, 7(6):34–45, June 1974.

[8] M. Kozuch and M. Satyanarayanan. Internet Sus-
pend/Resume. In Proc. IEEE Workshop Mobile Computing
Systems and Applications, IEEE Press, 2002, pp. 40-46.

[9] Partho Nath, Michael Kozuch, David O'Hallaron, M. Sat-
yanarayanan, N. Tolia, and Matt Toups, Design Tradeoffs in
Applying Content Addressable Storage to Enterprise-scale
Systems Based on Virtual Machines. USENIX '06, Boston,
MA, May, 2006.

[10] Y. Saito, S. Frolund, A. Veitch, A. Merchant and S. Spence.
FAB: Building distributed enterprise disk arrays from
commodity components. In 11th International Conference
on Architectural Support for Programming Languages and
Operating Systems, October 2004

[11] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S.
Lam, and M.Rosenblum. Optimizing the migration of vir-
tual computers. In Proc. of the 5th Symposium on Operating
Systems Design and Implementation (OSDI-02), December
2002.

[12] M. Satyanarayanan, Michael Kozuch, Casey Helfrich, and
David R. O'Hallaron, Towards Seamless Mobility on Perva-
sive Hardware, Pervasive & Mobile Computing, vol 1, num
2, pp 157-189, June, 2005.

[13] X. Wang, A. Yao, and F. Yao, New Collision search for
SHA-1, Rump Session, Crypto'05, August 2005.

[14] A. Whitaker, M. Shaw, and S. Gribble. Denali: Lightweight
virtual machines for distributed and networked applications.
Technical report, University of Washington, February 2001.

[15] Z. Zhang, Q. Lian, S.D. Lin, W. Chen, Y. Chen, C. Jin,
BitVault: a Highly Reliable Distributed Data Retention Plat-
form, Technical report, MSR-TR-2005-179.

[16] M. Zhao and R. J. Figueiredo. Distributed File System Sup-
port for Virtual Machines in Grid Computing, In Proceed-
ings of HPDC-13, 06/2004

[17] FIPS 180-1. Announcement of weakness in the secure hash
standard. Technical report, National Institute of Standards
and Technology (NIST), April 1994.

[18] http://www.microsoft.com/windows/virtualpc/default.mspx
[19] Get Started Using Remote Desktop

http://www.microsoft.com/windowsxp/using/mobility/getst
arted/remoteintro.mspx

[20] Inside Windows: An In-Depth Look into the Win32 Port-
able Executable File Format
http://msdn.microsoft.com/msdnmag/issues/02/02/PE/defau
lt.aspx

[21] http://www.vmware.com

http://www.microsoft.com/windows/virtualpc/default.mspx
http://www.microsoft.com/windowsxp/using/mobility/getstarted/remoteintro.mspx
http://www.microsoft.com/windowsxp/using/mobility/getstarted/remoteintro.mspx
http://msdn.microsoft.com/msdnmag/issues/02/02/PE/default.aspx
http://msdn.microsoft.com/msdnmag/issues/02/02/PE/default.aspx
http://www.vmware.com/

	1. Introduction
	2. Migrating working environment
	3. Design
	3.1. Overall architecture
	3.2. Coordinating the private and shared cache
	3.3. Instantiation
	3.4. Commit
	3.5. Versioning of VM instance

	4. Implementation
	5. Experimental Results
	5.1. Instantiation efficiency
	5.2. Commit cost

	6. Related work
	7. Conclusions and future work
	References

